K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai oy bn :(

9 tháng 3 2020

xíu nữa giải

9 tháng 3 2020

Có DM=DA=DC=DE( abcd là hình vuông)

\(\Rightarrow\Delta EMC\) vuông tại M

\(\Delta EMC\&\Delta ECB\) ( đều vuông và cùng góc E)

Suy ra đồng dạng

b/Xét tgiac ABI và DEI có

\(AB=DE\left(=DC\right)\)

\(\widehat{BAI}=\widehat{EDI}=90,\widehat{ABI}=\widehat{DEI}\left(SLT\right)\)( AB//DE)

Suy ra \(\Delta ABI=\Delta DEI\left(cgv-gn\right)\Rightarrow S_{ABI}=S_{DEI}\)

\(\Leftrightarrow S_{ABI}+S_{BCDI}=S_{DEI}+S_{BCDI}\)

\(\Leftrightarrow S_{ABCD}=S_{EBC}\Leftrightarrow a^2=\frac{1}{2}MC.EB\Rightarrow MC.EB=2a^2\)

Ta có: B đx H qua AD

=> AD là tt của BH

=> IB=IH

=> tam giác BIH cân tai I

=> góc AIB = góc AIH

lại có góc AIH=góc DIC

=>góc DIC= gócAIB

a: Ta có: A đối xứng với D qua BC

nên BC là đường trung trực của AD

=>BC vuông góc với AD tại trung điểm của AD

Ta có: ΔABC cân tại A

mà AF là đường cao

nên F là trung điểm của BC

Xét tứ giác ABDC có

F là trung điểm của AD

F là trung điểm của BC

DO đó: ABDC là hình bình hành

mà AB=AC

nên ABDC là hình thoi

b: Xét ΔEBC có

BA là đường trung tuyến

BA=EC/2

Do đó:ΔEBC vuông tại B

c: Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

21 tháng 11 2022

câu d, e đâu?

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

a: Ta có: D đối xứng với A qua BC

nên BC là đường trung trực của AD

=>BC vuông góc với AD tại trung điểm của AD

=>F là trung điểm của AD

Ta có: ΔABC cân tại A

mà AF là đường cao

nên F là trung điểm của BC

Xét tứ giác ABDC có

F là trung điểm của AD

F là trung điểm của BC

Do đó:ABDC là hình bình hành

mà AB=AC
nên ABDC là hình thoi

b: Xét ΔEBC có 

BA là đường trung tuyến

BA=EC/2

Do đó:ΔEBC vuông tại B

=>EB\(\perp\)BC

c: Xét tứ giác ADBE có 

AD//BE

AD=BE

Do đó; ADBE là hình bình hành

16 tháng 4 2020

P/S: Bài này tớ nhớ làm trong đề lớp 9 nào đó mà quên rồi!

16 tháng 4 2020

A B C D E F O

có hình thoi ABCD (gt) => AB = BC (Đn)

có : AB = AC (gt)

=> AB = BC = AC 

=> tam giác ABC đều (đn)

=> ^ABC = 60  (tc)

có : BC // AD do ABCD là hình thoi (gt) ; ^ABC slt ^EAB 

=> ^EAB = 60 (tc) 

tương tự => ^EAB = ^BCF = 60           

có : AD // BC (cmt) => ^AEB = ^CBF (đv) 

xét tam giác AEB và tam giác CBF 

=> tam giác AEB đồng dạng với tg CBF (g-g)

=> AE/AB = BC/CF (đn)

có : AB = BC = AC (cmt)

=> AE/AC = AC/CF 

có : ^EAC = ^ACF = 120 (tự cm)

xét tam giác EAC và tam giác ACF 

=> tam giác EAC đồng dạng với tg ACF (c-g-c)

=> ^AEC = ^OAC (Đn)

xét tam giác EAC và tg AOC có : ^ACO chung

=> tg EAC đồng dạng với tg AOC (g-g)

=> ^AOC = ^EAC (đn) mà ^EAC = 120

=> ^AOC = 120  có : ^AOC = ^EOF (đối đỉnh)

=> ^EOF = 120