Cho hình vuông ABCD, cạnh a. Gọi E là điểm đối xứng với C qua D, EB cắt AD tại I. Trên EB lấy điểm M sao cho DM=DA
a, Chứng minh tam giác EMC đồng dạng với tam giác ECB
b, Chứng minh EB.MC = 2a2
c, Tính diện tích tam giác EMC theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có DM=DA=DC=DE( abcd là hình vuông)
\(\Rightarrow\Delta EMC\) vuông tại M
Có \(\Delta EMC\&\Delta ECB\) ( đều vuông và cùng góc E)
Suy ra đồng dạng
b/Xét tgiac ABI và DEI có
\(AB=DE\left(=DC\right)\)
\(\widehat{BAI}=\widehat{EDI}=90,\widehat{ABI}=\widehat{DEI}\left(SLT\right)\)( AB//DE)
Suy ra \(\Delta ABI=\Delta DEI\left(cgv-gn\right)\Rightarrow S_{ABI}=S_{DEI}\)
\(\Leftrightarrow S_{ABI}+S_{BCDI}=S_{DEI}+S_{BCDI}\)
\(\Leftrightarrow S_{ABCD}=S_{EBC}\Leftrightarrow a^2=\frac{1}{2}MC.EB\Rightarrow MC.EB=2a^2\)
Ta có: B đx H qua AD
=> AD là tt của BH
=> IB=IH
=> tam giác BIH cân tai I
=> góc AIB = góc AIH
lại có góc AIH=góc DIC
=>góc DIC= gócAIB
a: Ta có: A đối xứng với D qua BC
nên BC là đường trung trực của AD
=>BC vuông góc với AD tại trung điểm của AD
Ta có: ΔABC cân tại A
mà AF là đường cao
nên F là trung điểm của BC
Xét tứ giác ABDC có
F là trung điểm của AD
F là trung điểm của BC
DO đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
b: Xét ΔEBC có
BA là đường trung tuyến
BA=EC/2
Do đó:ΔEBC vuông tại B
c: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
a: Ta có: D đối xứng với A qua BC
nên BC là đường trung trực của AD
=>BC vuông góc với AD tại trung điểm của AD
=>F là trung điểm của AD
Ta có: ΔABC cân tại A
mà AF là đường cao
nên F là trung điểm của BC
Xét tứ giác ABDC có
F là trung điểm của AD
F là trung điểm của BC
Do đó:ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
b: Xét ΔEBC có
BA là đường trung tuyến
BA=EC/2
Do đó:ΔEBC vuông tại B
=>EB\(\perp\)BC
c: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó; ADBE là hình bình hành
có hình thoi ABCD (gt) => AB = BC (Đn)
có : AB = AC (gt)
=> AB = BC = AC
=> tam giác ABC đều (đn)
=> ^ABC = 60 (tc)
có : BC // AD do ABCD là hình thoi (gt) ; ^ABC slt ^EAB
=> ^EAB = 60 (tc)
tương tự => ^EAB = ^BCF = 60
có : AD // BC (cmt) => ^AEB = ^CBF (đv)
xét tam giác AEB và tam giác CBF
=> tam giác AEB đồng dạng với tg CBF (g-g)
=> AE/AB = BC/CF (đn)
có : AB = BC = AC (cmt)
=> AE/AC = AC/CF
có : ^EAC = ^ACF = 120 (tự cm)
xét tam giác EAC và tam giác ACF
=> tam giác EAC đồng dạng với tg ACF (c-g-c)
=> ^AEC = ^OAC (Đn)
xét tam giác EAC và tg AOC có : ^ACO chung
=> tg EAC đồng dạng với tg AOC (g-g)
=> ^AOC = ^EAC (đn) mà ^EAC = 120
=> ^AOC = 120 có : ^AOC = ^EOF (đối đỉnh)
=> ^EOF = 120