K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho 2 biểu thức: A = x - 3/ x^2 - x + 1                                                                                                B = (3x + 6/ x^2 - 9 - 2/ x - 3) : 1/ x +3                                                                                                        a) Chứng minh: B = x/ x - 3                                                ...
Đọc tiếp

Cho 2 biểu thức: A = x - 3/ x^2 - x + 1                                                                                                B = (3x + 6/ x^2 - 9 - 2/ x - 3) : 1/ x +3                                                                                                        a) Chứng minh: B = x/ x - 3                                                                                                                                                                                                  b)      Tính P = A.B             

1
31 tháng 12 2022

a: \(B=\left(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}-\dfrac{2}{x-3}\right):\dfrac{1}{x+3}\)

\(=\dfrac{3x+6-2x-6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{1}=\dfrac{x}{x-3}\)

b: \(P=A\cdot B=\dfrac{x}{x-3}\cdot\dfrac{x-3}{x^2-x+1}=\dfrac{x}{x^2-x+1}\)

5 tháng 10 2019

rút gọn biểu thức

a) \(4x^2-\left(x+3\right).\left(x-5\right)+x\)

\(=4x^2-\left(x^2-5x+3x-15\right)+x\)

\(=4x^2-x^2+5x-3x+15+x\)

\(=3x^2+3x+15.\)

b) \(x.\left(x-5\right)-3x.\left(x+1\right)\)

\(=x^2-5x-\left(3x^2+3x\right)\)

\(=x^2-5x-3x^2-3x\)

\(=-2x^2-8x.\)

d) \(\left(x+3\right).\left(x-1\right)-\left(x-7\right).\left(x-6\right)\)

\(=x^2-x+3x-3-\left(x^2-6x-7x+42\right)\)

\(=x^2-x+3x-3-x^2+6x+7x-42\)

\(=15x-45.\)

Chúc bạn học tốt!

25 tháng 6 2023

\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)

\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)

\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)

\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)

\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)

\(=\dfrac{-3x+6}{22-3x^2}\)

Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)

23 tháng 7 2019

a) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]\)

\(=\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=\left(x^2-1\right)\left(-3x^2\right)\)

\(=-3x^4+3x^2=3\left(x^2-x^4\right)=3\left(x-x^2\right)\left(x+x^2\right)=\left(3x-3x^2\right)\left(x+x^2\right).\)

23 tháng 7 2019

b)\(\left(x^4-3x^2+9\right)\left(x^2+3-\left(3+x^2\right)\right)^3=\left(x^4-3x^2+9\right).0^3=0\)

c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)\)

\(=\left(x-3\right)^3-\left[\left(x-3\right)^3+3.x.3.\left(x-3\right)\right]+6x^2+12x+6\)

\(=6x^2+12x+6-9x\left(x-3\right)=6x^2+12x+6-9x^2+27x\)

\(=39x-3x^2+6=3\left(13x-x^2+2\right).\)

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

16 tháng 10 2020

Bài 1 : 

a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)

\(=x^2+6x+9+x^2-6x+9+2x^2-18\)

\(=4x^2\)

b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)

16 tháng 10 2020

Bài 2 : 

a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)

b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)

c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)