K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}.\frac{2}{3}....\frac{2011}{2012}\)

\(=\frac{1.2....2011}{2.3....2012}\)

\(=\frac{1}{2012}\)

5 tháng 3 2017

Ta co : (1 - 1/2) . (1 - 1/3) . (1 - 1/4) ...... (1 - 1/2011) . (1 - 1/2012)

       =  1/2 . 2/3 . 2/4 ...... 2010/2011 . 2011/2012

       = 1/2012

12 tháng 4 2016

@@@@@

1 tháng 11 2016

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)

\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}.\frac{2012}{2013}\)(vì có 2012 thừa số âm nên kết quả là dương)

\(=\frac{1}{2013}\)

13 tháng 8 2016

Ta áp dụng công thức: \(a-b=\left[-\left(b-a\right)\right]\)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)

\(=-\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\left(1-\frac{1}{2013}\right)\right]\)

\(=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2011}{2012}.\frac{2012}{2013}\right)\)

\(=-\frac{1.2.3...2011.2012}{2.3.4....2012.2013}\)

\(=-\frac{1}{2013}\)

13 tháng 8 2016

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2012}{2013}\)

Liệt tử thừa với mẫu thừa:

\(=\frac{1}{2013}\)

Chúc em học tốt^^

1 tháng 11 2016

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)

\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)

\(=\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-2011\right).\left(-2012\right)}{2.3.4....2013}\)

\(=\frac{1.2.3...2011.2012}{2.3.4.5...2013}\) ( vì các số hạng ở trên tử chẵn )

\(=\frac{1}{2013}\)

 

\(P=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(3+1\right).3}{2}+...+\frac{1}{2012}.\frac{\left(2012+1\right).2012}{2}\)

\(=1+\frac{\left(1+2\right)}{2}+\frac{\left(1+3\right)}{2}+...+\frac{\left(1+2012\right)}{2}\)

\(=1+\frac{2011}{2}+\frac{\left(2012+2\right).2011}{2}=1+\frac{2011}{2}+2011.1007\)

24 tháng 2 2019

avatar lm sao

29 tháng 12 2017

Ta có: \(1+2+...+n=\frac{\left(n+1\right)n}{2}\)

\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)

\(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Vậy nên:

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2012}\right)\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}....\frac{2011.2014}{2012.2013}\)

\(=\frac{1}{3}.\frac{2014}{2012}=\frac{1007}{3018}\)