K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:
\(\left\{\begin{matrix} 3x+5y=1\\ 2x-y=-8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x+5y=1\\ 10x-5y=-40\end{matrix}\right.\)

$\Rightarrow (3x+5y)+(10x-5y)=1+(-40)$

$\Leftrightarrow 13x=-39\Leftrightarrow x=-3$

$y=2x+8=2(-3)+8=2$
Vậy hpt có nghiệm $(x,y)=(-3, 2)$

15 tháng 7 2019

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (2) ta rút ra được y = 2x + 8 (*)

Thế (*) vào phương trình (1) ta được :

3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.

Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.

Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).

 

10 tháng 11 2021

Phép chia hết xảy ra khi \(\left\{{}\begin{matrix}n+1\le3\\n+3\le5\end{matrix}\right.\Leftrightarrow n\le2\)

1 tháng 1 2018

Cách 1

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được y = 3x – 5 (*)

Thế (*) vào phương trình (2) ta được :

5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.

Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.

Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (2) ta rút ra được y = 2x + 8 (*)

Thế (*) vào phương trình (1) ta được :

3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.

Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.

Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được x = 2 3 y  (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay y = 6 vào (*) ta được x = 4.

Vậy hệ phương trình có nghiệm duy nhất (x ; y) = (4 ; 6).

Cách 2

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Giải hệ phương trình Giải bài 12 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 ta làm như sau:

Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

+ Nếu xuất hiện phương trình dạng 0x = a (hoặc 0y = a) thì ta kết luận hệ phương trình vô nghiệm nếu a ≠ 0 hoặc hệ có vô số nghiệm nếu a = 0.

18 tháng 3 2019

http://lovelove.xtreemhost.com/nguhaykhong.html?i=1

7 tháng 10 2022

\(pkkikkkkkk\min\limits_{kkkkk\max\limits_{ }kkkk\lim\limits_{\rightarrow}kkkk\sqrt{ }kkk\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }}\)

25 tháng 1 2020

12x-21=5y

do 12,21 chia hết cho 3 => 5y chia hết cho 3 => y=3k

27 tháng 8 2021

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

27 tháng 8 2021

cảm ơn bạn

 

19 tháng 3 2019

Ta có : \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)

\(\Leftrightarrow\frac{3\left(4x^2+4x+3\right)+2}{4x^2+4x+3}=\frac{5\left(y^2-2y+2\right)-1}{y^2-2y+2}\)

\(\Leftrightarrow3+\frac{2}{4x^2+4x+3}=5-\frac{1}{y^2-2y+2}\)

Do \(\frac{2}{4x^2+4x+3}=\frac{2}{\left(2x+1\right)^2+2}\le\frac{2}{2}=1\) \(\Rightarrow3+\frac{2}{4x^2+4x+3}\le4\left(1\right)\)

\(\frac{1}{y^2-2y+2}=\frac{1}{\left(y-1\right)^2+1}\le\frac{1}{1}=1\) \(\Rightarrow5-\frac{1}{y^2-2y+2}\ge5-1=4\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow VT=VP=4\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)

Vậy ....