Tìm các tham số thực m để đường thẳng y = m2x + m + 2 song song với đường thẳng y = x + 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng y = (m2 – 3)x + 2m – 3 song song với đường thẳng y = x + 1 khi và chỉ khi:
Chọn C.
b: Để hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m^2-2=2\\1-m< >3\end{matrix}\right.\Leftrightarrow m=2\)
Để (d1) // (d2)\(\Rightarrow\left\{{}\begin{matrix}m+4=-2\\-m+6\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m-4\\m\ne3\end{matrix}\right.\Rightarrow m=-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+4=-2\\-m+6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\Leftrightarrow m=-6\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}m+2=-1\\-2m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow m=-3\\ b,\text{PTHDGD: }2x+1=\left(m+2\right)x-2m\\ \text{Thay }x=-2\Leftrightarrow-2m-4-2m=-3\\ \Leftrightarrow-4m=1\Leftrightarrow m=-\dfrac{1}{4}\)
a: Để hai đường song thì m+3=4
=>m=1
c: (d): y=4x+4
Tọa độ giao điểm là:
4x+4=x-1 và y=x-1
=>3x=-5 và y=x-1
=>x=-5/3 và y=-8/3
Lời giải:
Để $(d)$ song song với $y=-x+3m$ thì:
\(\left\{\begin{matrix} m-4=-1\\ -m+3\neq 3m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=3\\ m\neq \frac{-3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
Lời giải:
Để $y=m^2x+m+2$ song song với $y=x+3$ thì:
\(\left\{\begin{matrix} m^2=1\\ m+2\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=\pm 1\\ m\neq 1\end{matrix}\right.\Leftrightarrow m=-1\)