x+1/9+ x+2/8=x+3/7 + x=4/6 . giai phuong trinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)
\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)
\(\Leftrightarrow96x+744=-6x+48\)
\(\Leftrightarrow102x=-696\)
\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)
Vậy .....
b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)
\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)
\(\Leftrightarrow x=-5\) (nhận)
Vậy ....
b) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+28+2\right)-1680=0\)
\(\Leftrightarrow\left(x^2-11x+28\right)^2+2\left(x^2-11x+28\right)+1-1681=0\)
\(\Leftrightarrow\left(x^2-11x+28+1\right)^2-41^2=0\)
\(\Leftrightarrow\left(x^2-11x+29-41\right)\left(x^2-11x+29+41\right)=0\)
\(\Leftrightarrow\left(x^2-11x-12\right)\left(x^2-11x+70\right)=0\)
Th1: \(x^2-11x-12=0\Leftrightarrow x^2+x-12x-12=0\Leftrightarrow\left(x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow x-12=0\Leftrightarrow x=12\) hoặc \(x+1=0\Leftrightarrow x=-1\)
Th2:\(x^2-11x+70=0\Leftrightarrow x^2-2.x.\frac{11}{2}+\left(\frac{11}{2}\right)^2+\frac{159}{4}=0\Leftrightarrow\left(x-\frac{11}{2}\right)^2+\frac{159}{4}=0\)
Vì\(\left(x-\frac{11}{2}\right)^2\ge0\Rightarrow\left(x+\frac{11}{2}\right)^2+\frac{159}{4}\ge\frac{159}{4}\)
Mà ta có \(\left(x+\frac{11}{2}\right)^2+\frac{159}{4}=0\) Nên k có giá trị của x
Vậy tập nghiệm của phương trình là \(S=\left\{12;-1\right\}\)
a) x=-3,
x=2;
x = -(căn bậc hai(3)*căn bậc hai(5)*i+1)/2;
x = (căn bậc hai(3)*căn bậc hai(5)*i-1)/2;
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k