tinh 1-1/2^2.1-1/3^2.....1-1/100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
S=1.1/2+1/2.1/3+...+1/29.1/30
=1-1/2+1/2-1/3+...+1/29-1/30
=1-1/30=29/30
a) \(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào ta được :
\(\frac{1}{100.99}-\frac{98}{99}=\frac{1}{9900}-\frac{98}{99}=\frac{-9799}{9900}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-3,6.21\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy biểu thức trong ngoặc thứ ba của tử số có kết quả bằng 0
\(\Rightarrow\)Phân số ấy có kết quả bằng 0
\(a,\frac{1}{999\cdot1000}-\frac{1}{998\cdot999}-\frac{1}{997\cdot998}-...-\frac{1}{2\cdot1}\)
\(=\frac{1}{999\cdot1000}-\left[\frac{1}{2\cdot1}+\frac{1}{2\cdot3}+...+\frac{1}{997\cdot998}+\frac{1}{998\cdot999}\right]\)
\(=\frac{1}{999\cdot1000}-\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{998}-\frac{1}{999}\right]\)
\(=\frac{1}{999\cdot1000}-\left[1-\frac{1}{999}\right]=\frac{1}{999\cdot1000}-\frac{998}{999}=...\)
Tính nốt , không chắc :v
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-98}{100}=\frac{-49}{50}\)
Ủng hộ mk nha ^_-
khó nhìn lắm bn ak
sao pn ko cho
\(\frac{11}{125}-\frac{17}{18}-\frac{5}{8}+\frac{4}{9}+\frac{17}{14}.\)
thì có phải dễ nhìn hơn ko
a, \(A=\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(=\frac{11}{125}+\left(\frac{-17}{18}+\frac{4}{9}\right)+\left(\frac{-5}{7}+\frac{17}{14}\right)\)
\(=\frac{11}{125}+\frac{-1}{2}+\frac{1}{2}\)
\(=\frac{11}{125}\)
b, \(B=1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1+2+3+4-3-2-1\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=4-3=1\)
c, \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-49}{50}\)
a) Đặt biểu thức trên là A
\(A=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}+\frac{2}{11}-\frac{5}{7}+\frac{3}{7}-\frac{1}{5}\)
\(A=\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{-3}{7}+\frac{3}{7}\right)+\left(\frac{-2}{11}+\frac{2}{11}\right)+\frac{5}{9}+\frac{7}{13}-\frac{5}{7}\)
\(A=0+0+0+\frac{5}{9}+\frac{7}{13}-\frac{5}{7}\)
\(A=\frac{128}{117}-\frac{5}{7}\)
\(A=\frac{311}{819}\)
1. 1-2+3-4+5-6-.....+99-100
=(1-2)+(3-4)+(5-6)+...+(99-100) (50 cặp)
=(-1)+(-1)+(-1)+...+(-1) (50 số -1)
=(-1).50
=-50
2.1+3-5-7+9+11-.....-397-399
=(1+3-5-7)+(9+11-13-15)+....+(387+389-391-393)+395-397-399 (99 cặp)
=(-8)+(-8)+(-8)+...+(-8)+(-401)(có 99 có -8)
=(-8).99+(-401)
=(-792)+(-401)
=-1193
3. 1-2-3+4+5-6-7+...+96+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(93-94-95+96)+(97-98-99+100) (25 cặp)
=0+0+0+...+0
=0
4. A=2100-299-298-.....-22-2-1
2A=2101-2100-299-....-23-22-2
2A-A=A=2101-2100-2100+1
A=2101-2.2100+1
A=2101-2101+1
A=1