CMR \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{1317}-\frac{1}{1318}+\frac{1}{1319}\) = \(\frac{1}{660}+\frac{1}{661}+......+\frac{1}{1319}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{1317}-\frac{1}{1318}+\frac{1}{1319}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{1319}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{1318}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{1319}-\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{658}+\frac{1}{659}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{659}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{659}\right)+\frac{1}{660}+\frac{1}{661}+......+\frac{1}{1319}\)
\(=\frac{1}{660}+\frac{1}{661}+.........+\frac{1}{1319}\)