Tìm số nguyên để phân số sau có giá trị nguyên
a, \(\frac{7}{2n+1}\) b,\(\frac{4}{3n+2}\)
c,\(\frac{n+1}{n+5}\) d,\(\frac{2n+15}{2n-1}\)
e,\(\frac{n^2+3n+1}{+n^2+4n-4}\)(n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
a) n =6
b) n=1
c) -1
d) n=1
e) n=1
a) \(\frac{7}{2n+1}\)có giá trị nguyên \(\Leftrightarrow\) \(7\)\(⋮\) \(2n+1\)\(\Rightarrow\)\(2n+1\)\(\in\)\(Ư\left(7\right)=\left[1;7;-1;-7\right]\)
\(\Rightarrow2n\in\left[0;6;-2;-8\right]\)\(\Rightarrow n\in\left[0;3;-1;-4\right]\)
b) \(\frac{4}{3n+2}\)có giá trị nguyên \(\Leftrightarrow4⋮3n+2\Rightarrow3n+2\inƯ\left(4\right)=\left[1;2;4;-1;-2;-4\right]\)\(\Rightarrow3n\in\left\{-1;0;2;-3;-4;-6\right\}\)\(\Rightarrow n\in\left[\frac{-1}{3};0;\frac{2}{3};-1;\frac{-4}{3};-2\right]\). Mà \(n\in Z\Rightarrow n\in\left[0;-1;-2\right]\)
c) \(\frac{n+1}{n+5}\)cos giá trị nguyên \(\Leftrightarrow n+1⋮n+5\Rightarrow n+1-\left(n+5\right)⋮n+5\Leftrightarrow n+1-n-5⋮n+5\Rightarrow-4⋮n+5\)
\(\Rightarrow n+5\in\left[1;4;-1;-4\right]\Rightarrow n\in\left[-4;-1;-6;-9\right]\)
d) \(\frac{2n+15}{2n-1}\in Z\Leftrightarrow2n+15⋮2n-1\Rightarrow2n+15-\left(2n-1\right)⋮2n-1\Rightarrow2n+15-2n+1⋮2n-1\)
\(\Rightarrow16⋮2n-1\Rightarrow2n-1\inƯ\left(16\right)=\left[1;2;4;8;16;-1;-2;-4;-8;-16\right]\)
\(\Rightarrow2n\in\left[2;3;5;9;17;0;-1;-3;-7;-15\right]\)\(\Rightarrow n\in\left[1;0\right]\)