cho tam giác ABC nhọn có AB < AC và đường cao AE . Tia phân giác của góc B cắt AE ở H . Kẻ HF vuông góc với AB ở F
a, So sánh HF và HE
b, Chứng minh : HF < HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBEH vuông tại E và ΔBFH vuông tại F có
BH chung
góc EBH=góc FBH
=>ΔBEH=ΔBFH
=>HE=HF
2: ΔHEC vuông tại E
=>HE<HC
=>HF<HC
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
a: Xét ΔEBH vuông tại E và ΔFBH vuông tại F có
BH chung
góc EBH=góc FBH
Do đó: ΔEBH=ΔFBH
=>HF=HE
b: HF=HE
mà HE<HC
nên HF<HC