K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`M = (x^2 + 5 - 2x + 4)/(x^2+5)`

`= 1 - (2x-4)/(x^2+5) <= 1 - 0 = 1 (x^2+5 >0)`.

Dấu `=` xảy ra `<=> 2x- 4 = 0 <=> x = 2.`

Vậy ...

27 tháng 12 2022

Cảm ơn ah

12 tháng 6 2018

\(A=\dfrac{2x+1}{x^2+2}\)

*Min A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)

Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

*Max A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)

\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)

\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)

Vậy \(Max_A=1khi\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

3 tháng 9 2023

\(\dfrac{M}{N}=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) (ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))

\(=\left[\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)\(=\left[\dfrac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\left[\dfrac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\dfrac{2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{2}{\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{M}{N}+1=\dfrac{2}{\sqrt{x}+2}+1\)

Ta thấy: \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}+2\ge2\forall x\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\forall x\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+2}+1\le2\forall x\)

\(\Rightarrow Max_P=2\Leftrightarrow\dfrac{2}{\sqrt{x}+2}+1=2\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=1\)

\(\Leftrightarrow\sqrt{x}+2=2\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

#Urushi

3 tháng 9 2023

Bạn tự rút gọn nha .

c) Ta có : \(P\text{=}\dfrac{M}{N}+1\text{=}\dfrac{2}{\sqrt{x}+2}+1\)

Để P có giá trị lớn nhất.

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}cóGTLN\)

\(\Leftrightarrow\sqrt{x}+2cóGTNN\)

Mà : \(\sqrt{x}+2\ge2\)

\(\Rightarrow\) Để : \(\left(\sqrt{x}+2\right)_{min}\) \(\Leftrightarrow\sqrt{x}\text{=}0\Leftrightarrow x\text{=}0\)

Vậy............

28 tháng 9 2017

Hỏi đáp Toán

28 tháng 9 2017

Hỏi đáp Toán

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$|2x+5|\geq 0$ theo tính chất trị tuyệt đối

$\Rightarrow -|2x+5|\leq 0$

$\Rightarrow M=-|2x+5|+7\leq 7$

Vậy gtln của $M$ là $7$. Giá trị này đạt tại $2x+5=0\Leftrightarrow x=\frac{-5}{2}$

--------------------------------

$|x+2|\geq 0$ theo tính chất trị tuyệt đối

$\Rightarrow N=4-3|x+2|\leq 4$

vậy gtln của $N$ là $4$ khi $x=-2$

-----------

$|x+9|\geq 0$ theo tính chất trị tuyệt đối

$\Rightarrow |x+9|+2\geq 2$

$\Rightarrow R=\frac{18}{|x+9|+2}\leq \frac{18}{2}=9$

Vậy gtln của $R$ là $9$ khi $x=-9$