K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

đúng đó

5 tháng 3 2017

2017, Violympic Toán 8

6 tháng 3 2017

Áp dụng định lý Bơ-du:

Thay\(f\left(1\right)\) vào \(f\left(x\right)\),ta được:

\(1^{81}-45.1^{37}+2061=1-45+2061=2017\)

Vậy số dư là 2017

Chúc bạn học tốtvui

5 tháng 3 2017

2017

19 tháng 3 2020

Thay x=1 tìm dư

8 tháng 10 2023

Vì 60 chia hết cho 15 nên khi chia một số cho 60 dư 37 thì chia cho 15 dư:             

\(37-15=22\)                                 

Đáp số: \(22\)

8 tháng 10 2023

áp dụng công thức a=bq + r

12 tháng 3 2017

1972

20 tháng 9 2017

Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\)    (1) 

Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\)   (2) 

Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\)    (Với g(x) , h(x), t(x) là các đa thức)

Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)

Theo (1) thì b - a = 5.

Ta cũng có :

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)

Theo (2) thì b + 2a = 7.

Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)