Cho hình chữ nhật ABC tâm O , AB=4, AD=5. a) Tính độ lớn vecto BD b) Gọi M là trung điểm CD. Chứng minh 2vectoOM+vectoOB=1phần2 vectoAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(AB=4\) hay \(AD=4\) nhỉ? Sao lại có 2 kích thước của AD?
a: \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=2\cdot AC=2\cdot5=10\)
b: \(\left|\overrightarrow{AM}+\overrightarrow{AN}\right|=\left|\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{2}+\dfrac{\overrightarrow{AD}+\overrightarrow{AC}}{2}\right|\)
\(=\left|\dfrac{3\cdot\overrightarrow{AC}}{2}\right|=\dfrac{3}{2}AC=\dfrac{3}{2}\cdot5=\dfrac{15}{2}=7.5\)
Bài khá dài đó.
Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!
ý kiến gì thì nhắn tin cho mik mai 7g
pp, ngủ ngon!
a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)
⇔ AB = DM và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC
c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
Xét tam giác vuông AHB, ta có :
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
⇒ BC = AM = 3 (cm)
Ta có:
M là trung điểm của DC nên
SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)
Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)
⇔ SABD = SBMD = 3 (cm2)
Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
\(\left|\overrightarrow{BD}\right|=BD=\sqrt{AB^2+AD^2}=\sqrt{41}\)
Do O là tâm hình chữ nhật \(\Rightarrow\) O là trung điểm BD
Lại có M là trung điểm CD \(\Rightarrow\) OM là đường trung bình tam giác BCD
\(\Rightarrow\overrightarrow{OM}=\dfrac{1}{2}\overrightarrow{BC}\)
\(\Rightarrow2\overrightarrow{OM}=\overrightarrow{BC}\)
Đồng thời O là trung điểm AC \(\Rightarrow\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\)
Do đó:
\(2\overrightarrow{OM}+\overrightarrow{OB}=\overrightarrow{BC}+\overrightarrow{OB}=\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\) (đpcm)