K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

Gọi biểu thức trên là A

3A = 1 + 1/3 + 1/3^2 + … + 1/3^98`

3A – A = ( 1 + 1/3 + 1/3^2 + … + 1/3^98 ) – ( 1/3 + 1/3^2 + 1/3^3 + … + 1/3^99 )`

2A = 1 – 1/3^99

A = \(\dfrac{1-\dfrac{1}{3^{99}}}{2}\)


13 tháng 10 2019

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

7 tháng 12 2017

trả lời nhanh dùm

14 tháng 11 2015

M=1/3+1/3^2+...+1/3^99

3M=1+1/3+1/3^2+...+1/3^98

3M+1/3^99=1+1/3+...+1/3^99=1+M

3M-M=1-1/3^99

2M=1-1/3^99

M=(1-1/3^99)/2 

Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2

Vậy M<1/2

21 tháng 1 2018

S=1/3+1/3^2+1/3^3+...+1/3^99

=>3S=1+1/3+1/3^2+1/3^3+....+1/3^98

=>3S-S=(1+1/3+1/3^2+...1/3^98)-(1/3+1/3^2+...+1/3^99)

=>2S=1-1/3^99

=>2S=(3^99-1)/3^99

=>S=(3^99-1)/2.3^99

=>S=1/2-1/2.3^99.

Vì 1/2-1/2.3^99<1/2

=>S<1/2 (đpcm)

21 tháng 1 2018

Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1)

Áp dụng ta có:1-1/3=2/3 

1/3-1/(3^2)=2/(3^2) 

1/(3^2)-1/(3^3)=2/(3^3) 

1/(3^98)-1/(3^99)=2/(3^99). 

Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M. 

Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)