Cho tam giác nhọn ABC có AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau ở I. Gọi D, E theo thứ tự là hình chiếu của I trên BC, AC. Trên đoạn CD, lấy điểm M sao cho DM = AE. Gọi K là giao điểm của DE và AM. Qua M kè đường thăng song song với AC cắt đoạn DK tại N. a) Chứng minh tam giác CDE cân. b) Chứng minh MN = AE và K là trung điểm của AM. c) Chứng minh ba điểm B, I, K thẳng hàng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 7 2023
a: Xét ΔIDC và ΔIEC có
góc IDC=góc IEC
IC chung
góc C1=góc C2
=>ΔIDC=ΔIEC
=>DC=EC
=>ΔDCE cân tại C
b: MN//AC
=>góc DNM=góc DEC=góc NDM
=>ΔDMN cân tại M
=>MD=MN
=>MN=AE
Xét tứ giác AEMN có
AE//MN
AE=MN
=>AEMN là hbh
=>AM cắt EN tại trung điểm của mỗi đường
=>K là trung điểm của AM