Tìm x
a) 3-(x-5)+(3x-2) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
a ) 10 x X - 1 - 3 - 5 - 7 - ... - 19 = 2 + 4 + 6 + ... + 20
10 x X - 1 - 3 - 5 - 7 - ... - 19 = 110
10 x X - ( 1 + 3 + 5 + 7 + ... + 19 ) = 110
10 x X - 100 = 110
10 x X = 110 + 100
10 x X = 210
X = 210 : 10
X = 21
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
a,6x-3-5x+15+18x-24=24
19x-12=24
19x=36
x=36/19
c,10x-6x2+6x2-10x+21=3
0x=-18
không có x
d,3x2+3x-2x2-4x=-1-x
x2-x=-1-x
x2-x+x=-1
x2=-1
không có x thỏa mãn
3 - ( x - 5 ) + ( 3x - 2 ) = 6
3 - x + 5 + 3x - 2 = 6
3 + 2x + 3 = 6
6 + 2x = 6
2x = 0
x = 0
3-(x-5)+(3x-2)=6
3-x+5+3x-2=6
6+2x =6
2x =6-6
2x =0
=> x=0