K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2022

a. 525

b. 

25 tháng 12 2022

a. -82

b. 15

 

 

8 tháng 8 2017

A=1+3+3^2+3^3+3^4+...+3^100

3A=3+3^2+3^3+3^4+...+3^101

3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)

2A=3^101-1

A=(3^101-1):2

phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé

13 tháng 12 2017

a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)

=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100

=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101

=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )

=> 2A = 3^101 - 3

=> A = \(\dfrac{3^{101}-3}{2}\)

Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)

b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )

=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )

=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4

=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4

=> A chia hết cho 4

Vậy A chia hết cho 4 ( điều phải chứng minh )

Chúc bạn hoc tốt! ~ vuithanghoaokyeu

30 tháng 4 2017

dốt thế 

30 tháng 4 2017

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

4 tháng 3 2017

B=3+32+33+...+3100

3B=3.(3+32+33+...+3100)

3B=32+33+34+...+3100+3101

3B-B= 3101-3

Hay 2B=3101-1

B=(3101-1):2

Vậy B=(3101-1):2

4 tháng 3 2017

Ta có : 3B = 3x(3+3^2+3^3+....+3^99+3^100) = 3^2+3^3+3^4+....+3^100+3^101

Ta lại có 

      3B = 3^2+3^3+3^4+....+3^100+3^101

-

       B  = 3^2+3^3+3^4+....+3^100+3

     2B  = 3^101 - 3

=>   B  = (3^101 - 3)/2

26 tháng 10 2018

Bài 1:

          A=400x7x36+1620

*400x7x36 \(⋮\)2;3;5;9 

 1620         \(⋮\) 2;3;5;9

\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9

Bài 2:

C=3+32+33+........+360

   =(3+32)+(33+34)+...........+(359+360)

   =3.(1+2) 

26 tháng 10 2018

Bài 2 : 

a, \(C=3+3^2+3^3...+3^{60}\)

\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)

\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)

\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)

\(\Rightarrow C⋮4\)

\(b,1+3+3^2+3^3+...+3^{60}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)

\(\Rightarrow2A=3^{61}-1\)

\(\Rightarrow A=\frac{3^{61}-1}{2}\)

a: \(=\dfrac{2}{3}+\dfrac{19}{35}=\dfrac{70+57}{105}=\dfrac{127}{105}\)

b: \(=\dfrac{2}{7}+\dfrac{2}{5}=\dfrac{24}{35}\)

c: \(=\dfrac{7}{12}-\dfrac{14}{2}=\dfrac{7-84}{12}=\dfrac{-77}{12}\)

d: \(=\dfrac{-15}{60}-\dfrac{1}{8}=-\dfrac{3}{8}\)

e: \(=-\dfrac{12}{72}+\dfrac{1}{18}=\dfrac{-3}{18}+\dfrac{1}{18}=\dfrac{-2}{18}=\dfrac{-1}{9}\)

21 tháng 1 2019

Ta có: M = 1 + 3  + 32 + 33 + ... + 325

=> 3M = 3(1 + 3 +32 + 33 + ... + 325)

=> 3M = 3 + 32 + 33 + ... + 325 + 326

=> 3M - M = (3 + 32 + 33 + ... + 326) - (1 + 3 + 32 + 33 + ... + 325)

=> 2M = 326 - 1

=> M = \(\frac{3^{26}-1}{2}\)

^ là mũ nha

M=1+3+3^2+3^3+....+3^25

3M=3+3^2+3^3+3^4+...+3^26

=>2M=3M-M=3^26-1

=>M=2M:2=(3^26-1):2

Vậy M=(3^26-1):2

2 tháng 1 2024

a) \(5+3^{x+1}=86\)

\(=>3^{x+1}=86-5\)

\(=>3^{x+1}=81=3^4\)

\(=>x+1=4\) ( cùng cơ số )

\(=>x=4-1\)

\(=>x=3\)

b) \(15:\left(x+2\right)=\left(3^3+3\right):10\)

\(=>15:\left(x+2\right)=\left(27+3\right):10\)

\(=>15:\left(x+2\right)=30:10=3\)

\(=>x+2=15:3\)

\(=>x+2=5\)

\(=>x=5-2\)

\(=>x=3\)

c) \(\left(9x+2\right).4=80\)

\(=>9x+2=80:4\)

\(=>9x+2=20\)

\(=>9x=20-2\)

\(=>9x=18\)

\(=>x=18:9\)

\(=>x=2\)

d) \(\left(245-x\right)+7^2=14\)

\(=>\left(245-x\right)+14=14\)

\(=>245-x=14-14\)

\(=>245-x=0\)

\(=>x=245-0\)

\(=>x=245\)

2 tháng 1 2024

?