cho tam giác abc cân tại a . kẻ AK vuông góc bc tại k ( k thuộc bc )
a. cmr : kb = kc
b. kẻ km vuông góc ab ( m thuộc ab ) , kn vuông góc ac ( n thuộc ac )
so sánh : km và kn
c . cmr bc song song mn
[ kèm theo giả thiết và hình vẽ hộ mình nhé =))) nếu không thì giải hộ bài toán cũng được ^^ mình cần gấp lắm ạ . có gì mình sẽ hậu tạ sau ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AKC có :
A chung
góc AKC = AHB = 90 o
AB = AC ( tam giác cân )
=> AHB = AKC ( c . g . c )
=> AH = AK ( 2 cạnh t/ ứng )
a: Ta có: ΔABC cân tại A
mà AK là đường cao
nên K là trung điểm của BC
b: Xét ΔAMK vuông tại M và ΔANK vuông tại N có
AK chung
\(\widehat{MAK}=\widehat{NAK}\)
Do đó: ΔAMK=ΔANK
Suy ra: KM=KN
c: Xét ΔABC có AM/MB=AN/NC
nên MN//BC
Tam giác BKC vuông tại K
=> BC2=BK2+KC2
<=> BK2=BC2-KC2=52-32=25-9=16
BK=4 cm
Gọi I là giao điểm giữa AH và KG
Ta có : tam giác ABH=tam giác ACH(CH-GN)
Suy ra :A1=A2
Lại có: tam giác AKH=tam giác AGH(CH-GN)
Suy ra :AK=AG
Suy ra:tam giác AKG cân tại A mà tam giác ABC cân tại A . Suy ra :K1=B,G1=C
Suy ra :KG//BC(ĐPCM)
*Chú ý :mình quên ghi kí hiệu góc (chắc chắn đúng)
(Mình vẽ hình xấu hoắc à! Mà nhớ bài này giải rồi)
a) Ta có \(\Delta ABC\)cân tại \(A\Rightarrow AK\)vừa là đường cao vừa là trung tuyến (vừa là phân giác (*))
\(\Rightarrow KB=KC\)
b) Xét \(\Delta AMK\)và \(\Delta ANK\)có:
\(AK\): chung
\(\widehat{AMK}=\widehat{ANK}=90\)độ (gt)
\(\widehat{MAK}=\widehat{NAK}\)(Từ (*) ở câu a)
\(\Rightarrow\Delta AMK=\Delta ANK\left(g.c.g\right)\)
\(\Rightarrow KM=KN\)(hai cạnh tương ứng)
c) Từ cm câu b \(\Rightarrow AM=AN\)(hai cạnh tương ứng)
Ta có: \(\hept{\begin{cases}AM=AN\left(cmt\right)\\KM=KN\left(cmt\right)\end{cases}}\)
\(\Rightarrow AK\)là đường trung trực của \(MN\Rightarrow AK⊥MN\)
Ta lại có: \(\hept{\begin{cases}MN⊥AK\left(cmt\right)\\BC⊥AK\left(gt\right)\end{cases}}\)
\(\Rightarrow MN\)// \(BC\)