tìm x,y,z : a,2017-/x-2017/=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|x-2|=4-x
ĐK: \(4-x\ge0\Leftrightarrow x\le4\)
Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)
Vậy x = 3
Bài 2:
a, sao có z
b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)
Mà |2017-x|+|y-x+2018|=0
\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)
Vậy x=2017,y=1
c, giống b
Xin phép được sủa đề một chút nhé :)
\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)
\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)
\(=2\left(xy+yz+zx\right)=4034\)
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
x=2017