K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2022

Xét khai triển:

\(2^{2021}=\left(1+1\right)^{2021}=C_{2021}^0+C_{2021}^1+...+C_{2021}^{2020}+C_{2021}^{2021}\) (1)

\(0=\left(1-1\right)^{2021}=C_{2021}^0-C_{2021}^1+C_{2021}^2+...+C_{2021}^{2020}-C_{2021}^{2021}\) (2)

Trừ vế cho vế (1) và (2):

\(2^{2021}=2.C_{2021}^1+2.C_{2021}^3+...+2C_{2021}^{2021}\)

\(\Rightarrow C_{2021}^1+C_{2021}^3+...+C_{2021}^{2019}+C_{2021}^{2021}=\dfrac{2^{2021}}{2}=2^{2020}\)

\(\Rightarrow C_{2021}^1+C_{2021}^3+...+C_{2021}^{2019}+1=2^{2020}\)

\(\Rightarrow C_{2021}^1+C_{2021}^3+...+C_{2021}^{2019}=2^{2020}-1\)

14 tháng 5 2023

 

14 tháng 5 2023

oki

 

Có cái nịt nhá

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Ta sẽ đi CM đẳng thức tổng quát:

\((C^1_{2n})^2-(C^2_{2n})^2+(C^3_{2n})^2-....+(C^{2n-1}_{2n})^2-(C^{2n}_{2n})^2=C^n_{2n}+1\) với $n$ lẻ.

Theo nhị thức Newton ta có:

\((x^2-1)^{2n}=C^0_{2n}-C^1_{2n}x^2+C^2_{2n}x^4-....-C^n_{2n}x^{2n}+...+C^{2n}_{2n}x^{4n}\). Trong này, hệ số của $x^{2n}$ là $-C^n_{2n}$

Tiếp tục sử dụng nhị thức Newton:

\((x^2-1)^{2n}=(x+1)^{2n}(x-1)^{2n}=(C^0_{2n}+C^1_{2n}+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n})(C^0_{2n}x^{2n}-C^1_{2n}x^{2n-1}+C^2_{2n}x^{2n-2}-...+C^{2n}_{2n})\). Trong này, hệ số của $x^{2n}$ là

\((C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

Do đó:

\(-C^n_{2n}=(C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow -C^n_{2n}=1-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow (C^1_{2n})^2-(C^2_{2n})^2+...-(C^2_{2n})^2=1+C^n_{2n}\) 

Thay $n=1011$ ta có đpcm.

5 tháng 1 2021

dcvdx

9 tháng 3 2021

Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).

Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).

Thay vào đẳng thức cần cm ta có đpcm.