Giá trị nhỏ nhất của B= (x^2+1)^2+|-x^4-3|
giúp mik nha, mik đang cần rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)
a: Ta có: \(A=\dfrac{1}{2}\)
\(\Leftrightarrow x+2=2x-6\)
\(\Leftrightarrow-x=-8\)
hay x=8
Thay x=8 vào B,ta được:
\(B=-\dfrac{2}{8+2}=-\dfrac{2}{10}=-\dfrac{1}{5}\)
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
| x + 3 | \(\ge\)0
\(\Rightarrow\)2015 + | x + 3 | \(\ge\)2015
\(\Rightarrow\)B nhỏ nhất \(\Leftrightarrow\)B = 2015 \(\Leftrightarrow\)| x + 3 | = 0 \(\Leftrightarrow\)x = -3
Do I x + 3I \(\ge\)0 => Để B nhỏ nhất => I x+3I = 0
=> 2015 + |x + 3| = 2015 => I x+3 I = 0 => x = 3
Vậy giá trị nhỏ nhất của Biểu thức B = 2015 + |x + 3| là 2015 khi x = 3
ta có /x/ luôn > hoặc =0 với mọi x thưộc Z
suy ra /x/+5 luôn > hoặc =5 với mọi x thuộc Z
suy ra x+5 luôn > hoặc =5
Dấu "=" xảy ra khi x+5=5
suy ra x=0
vậy giá trị nhỏ nhất là 5 tại x=0
\(a,x^2-x+1\)
\(x^2-x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(< =>MIN=\frac{3}{4}\)dấu"=" xảy ra khi \(x=\frac{1}{2}\)
\(b,x^2+y^2-4\left(x+y\right)+16\)
\(x^2+y^2-4x-4y+16\)
\(\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)
\(\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
\(MIN=8\)dấu "=" xảy ra khi \(x=y=2\)
\(2x^2+8x+9\)
\(\left(x^2+8x+16\right)+x^2-7\)
\(\left(x+4\right)^2+x^2-7\ge-7\)
\(< =>MIN=-7\)dấu "=" xảy ra khi \(x=-4\)
\(H=\left(3x-6\right)^2-3\left|2x-4\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+1+2022\)
\(=\left(\left|3x-6\right|-1\right)^2+2022\)
Do \(\left(\left|3x-6\right|-1\right)^2\ge0;\forall x\)
\(\Rightarrow H\ge2022\)
\(\Rightarrow H_{min}=2022\) khi \(\left|3x-6\right|-1=0\Rightarrow x=\left\{\dfrac{7}{3};\dfrac{5}{3}\right\}\)
B1:
a,\(\left(3x-2\right)\left(x-3\right)=3x^2-9x-2x+6=3x^2-11x+6\)
b,\(\left(2x+1\right)\left(x+3\right)=2x^2+6x+x+3=2x^2+7x+3\)
c,\(\left(x-3\right)\left(3x-1\right)=3x^2-x-9x+3=3x^2-10x+3\)
B2:
1)\(x^2-\left(x+4\right)\left(x-1\right)=x^2-\left(x^2-x+4x-4\right)=x^2-x^2+x-4x+4=-3x+4\)
2)\(x\left(x+2\right)-\left(x-2\right)\left(x+4\right)=x^2+2x-\left(x^2+4x-2x-8\right)\)
\(=x^2+2x-x^2-4x+2x+8=8\)
B= (x2+1)2+|-x4-3|
=> B \(\ge0\)
( Vì ( x2+1\(\ge\)0 , | -x4-3| \(\ge0\))
=> GTNN của B = 0