Từ 1 điểm m ở ngoài (O) kẻ tiếp tuyến n là tiếp điểm. Gọi K là trung điểm MN, kẻ tiếp tuyến KI với đường tròn O (I là tiếp điểm).
a) CM R\(\Delta\)MNI là tam giác vuông.
b) Vẽ đường kính NJ của (O). CM 3 điểm M,I,J thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
KN,KI là tiếp tuyến
nên KN=KI=1/2NM
Xét ΔMNI có
IK là trung tuyến
IK=1/2NM
Do đo: ΔNMI vuông tại I
b: Xét (O) có
ΔNIJ nội tiếp
NJ là đường kính
Do đó: ΔNIJ vuông tại I
góc JIM=góc JIN+góc MIN=90+90=180 độ
=>M,I,J thẳng hàng
a) Ta có \(I\) là trung điểm \(AB,O\) là trung điểm \(BM\)
\(\rightarrow IO\) là đường trung bình \(\Delta ABM\rightarrow OI\text{/ / }AM\rightarrow OI\text{/ / }KM\)
Vì \(BM\) là đường kính của \(O\)\(\rightarrow BK\text{⊥}KM\rightarrow OI\text{⊥}BK\)
\(\rightarrow B,K\) đối xứng qua \(OI\)
\(\rightarrow\widehat{IKO=\widehat{IBO}=90^o}\)
\(\rightarrow IK\) là tiếp tuyền của \(O\)
Biết mỗi làm câu A
a: Xét (O) có
IB,IM là tiếp tuyến
nên IB=IM=IA
=>ΔIMA cân tại I
b: IB=IM
OB=OM
Do đó: OI là trung trực của BM
=>OI vuông góc với BM
=>K là trung điểm của BM
Xét ΔBMA có BK/BM=BI/BA
nên KI//MA và KI=1/2MA
=>AM=2KI
c: BK=BM/2=3cm
\(OK=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)
\(OK\cdot OI=OB^2\)
=>OI*căn 7=6^2=36
=>\(OI=\dfrac{36}{\sqrt{7}}\left(cm\right)\)
a: Xét (O) có
IM là tiếp tuyến
IB là tiếp tuyến
Do đó: IM=IB
mà IA=BI
nên IA=IM
b: Xét ΔABM có
MI là đường trung tuyến
MI=AB/2
Do đó: ΔMAB vuông tại M
c: Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
hay BM⊥CM
mà BM⊥AM
và CM,AM có điểm chung là M
nên A,M,C thẳng hàng
Xét tam giác BCK vuông tại K có KF là đường trung tuyến nên \(KF=\dfrac{BC}{2}=FB\). Suy ra tam giác FBK cân tại F.
Từ đó FI vuông góc với BK.
Ta có \(\widehat{EIF}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{FBE}\).
Suy ra tứ giác EBIF nội tiếp.
Từ đó \(\widehat{AFE}=90^o-\widehat{BFE}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{ACE}\) nên tứ giác AEFC nội tiếp.
Ta có \(\widehat{EAF}=\widehat{ECF}=\widehat{ABE}\) nên AN là tiếp tuyến của (ABE).
c: IH vuông góc CD
AC vuông góc CD
DO đó: IH//AC
Xét ΔDCA có IH//AC
nên \(\dfrac{IH}{AC}=\dfrac{DH}{DC}\)
=>\(IH=\dfrac{AC\cdot DH}{DC}\)
Xét ΔACO vuông tại C và ΔBHD vuông tại H có
\(\widehat{AOC}=\widehat{BDH}\left(=\widehat{AOB}\right)\)
Do đó: ΔACO đồng dạng với ΔBHD
=>\(\dfrac{AC}{BH}=\dfrac{CO}{HD}\)
=>\(BH=\dfrac{AC\cdot HD}{CO}\)
\(\dfrac{BH}{IH}=\dfrac{DO}{OC}=2\)
=>BH=2IH
=>I là trung điểm của BH