CMR: \(\frac{12}{25}\)< \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{49^2}\)< 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{1}{2.3}>\frac{1}{3^2}>\frac{1}{4.3};\frac{1}{3.4}>\frac{1}{4^2}>\frac{1}{4.5}....\)
Tương tự ta sẽ có :
\(\frac{1}{2^2}+\frac{1}{2.3}+.+\frac{1}{99.100}>A>\frac{1}{2^2}+\frac{1}{3.4}+..+\frac{1}{100.101}\)
hay ta có :
\(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}>A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{100}-\frac{1}{101}\)
hay \(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}>A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\)
hay ta có : \(\frac{1}{4}+\frac{1}{2}>A>\frac{1}{4}+\frac{1}{3}-\frac{31}{300}\Leftrightarrow\frac{3}{4}>A>\frac{12}{25}\)
vậy ta có điều phải chứng minh
\(\frac{25}{12}.\frac{23}{7}-\frac{25}{12}.\frac{12}{7}\)
\(=\frac{25}{12}.\left(\frac{23}{7}-\frac{12}{7}\right)\)\(\)
\(=\frac{25}{12}.\frac{11}{7}\)
\(=\frac{275}{84}\)
\(-\frac{6}{7}.\frac{7}{10}.\frac{11}{-6}.\left(-20\right)\)
\(=-\frac{3}{5}.\frac{-11}{6}.\left(-20\right)\)
\(=\frac{11}{10}.\left(-20\right)\)
\(=-22\)
Tính
\(\frac{12}{25}.\frac{23}{7}-\frac{12}{25}.\frac{12}{7}=\frac{12}{25}\left(\frac{23}{7}-\frac{12}{7}\right)\)
\(=\frac{12}{25}.\frac{11}{7}=\frac{132}{175}\)
\(-\frac{6}{11}.\frac{7}{10}.\frac{11}{-6}.\left(-20\right)\)
\(=\frac{-6.7.11.\left(-20\right)}{11.10.\left(-6\right)}=7.\left(-20\right)=-140\)
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
\(-\frac{5}{11}:\frac{12}{25}-\frac{6}{11}:\frac{12}{25}\)
\(=\frac{-5}{11}.\frac{25}{12}-\frac{6}{11}.\frac{25}{12}\)
\(=\left(\frac{-5}{11}-\frac{6}{11}\right).\frac{25}{12}\)
\(=-1.\frac{25}{12}\)
\(=\frac{-25}{12}\)
Học tốt
Bg
Ta có:\(\frac{-5}{11}\div\frac{12}{25}-\frac{6}{11}\div\frac{12}{25}\)
\(=\frac{-5}{11}.\frac{25}{12}-\frac{6}{11}.\frac{25}{12}\)
\(=\left(\frac{-5}{11}-\frac{6}{11}\right).\frac{25}{12}\)
\(=\left(-1\right).\frac{25}{12}\)
\(=\frac{-25}{12}\)
Ta có : \(\frac{x-1}{12}-\frac{2x-12}{14}=\frac{3x-14}{25}-\frac{4x-25}{27}\)
=> \(\frac{x-1}{12}-1-\frac{2x-12}{14}-1=\frac{3x-14}{25}-1-\frac{4x-25}{27}-1\)
=> \(\frac{x-13}{12}-\frac{2x-26}{14}=\frac{3x-39}{25}-\frac{4x-52}{27}\)
=> \(\frac{x-13}{12}-\frac{2\left(x-13\right)}{14}=\frac{3\left(x-13\right)}{25}-\frac{4\left(x-13\right)}{27}\)
=> \(\frac{x-13}{12}-\frac{2\left(x-13\right)}{14}-\frac{3\left(x-13\right)}{25}+\frac{4\left(x-13\right)}{27}=0\)
=> \(\left(x-13\right)\left(\frac{1}{12}-\frac{2}{14}-\frac{3}{25}+\frac{4}{27}\right)=0\)
=> \(x-13=0\)
=> \(x=13\)
Vậy phương trình trên có nghiệm là \(S=\left\{13\right\}\)