giải bài toán bằng cahcs lập phương trình:
x3+x2+4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x+24=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+8x+24=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+8\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-3\)
Ta có: \(x^3-x+24=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+8x+24=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
1.\(A=\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\dfrac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\dfrac{44\left(2-\sqrt{3}\right)}{22}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
2.1.a) \(x^2=\left(x-1\right)\left(3x-2\right)\Leftrightarrow x^2=3x^2-5x+2\Leftrightarrow2x^2-5x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
b) \(9x^4+5x^2-4=0\Leftrightarrow9x^4+9x^2-4x^2-4=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(9x^2-4\right)=0\)
mà \(x^2+1>0\Rightarrow9x^2=4\Rightarrow x^2=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2) Gọi số xe lúc đầu của đội là a(xe) \(\left(a\in N,a>0\right)\)
Theo đề,ta có: \(\left(a-2\right)\left(\dfrac{120}{a}+3\right)=120\Leftrightarrow120+3a-\dfrac{240}{a}-6=120\)
\(\Leftrightarrow\dfrac{3a^2-6a-240}{a}=0\Rightarrow3a^2-6a-240=0\Rightarrow a^2-2a-80=0\)
\(\Leftrightarrow\left(a+8\right)\left(a-10\right)=0\) mà \(a>0\Rightarrow a=10\)
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........Gọi số tờ tiền loại 200 ngàn đồng là x tờ (x>0)
Số tờ tiền loại 100 ngàn đồng là y tờ (y>0)
Do ba Lan đến được 36 tờ nên: \(x+y=36\)
Do tổng số tiền rút là 6 triệu đồng (\(=6000\) ngàn đồng) nên:
\(200x+100y=6000\Leftrightarrow2x+y=60\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=36\\2x+y=60\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
a: =>3x=-7/2-1=-9/2
=>x=-3/2
b: =>2(x+4)+3x+2=70
=>2x+8+3x+2=70
=>5x+10=70
hay x=12
c: \(\Leftrightarrow\left(3x-5\right)\left(3x-5-6x-10\right)=0\)
=>(3x-5)(-3x-15)=0
=>x=5/3 hoặc x=-5
d: \(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=-12+x^2-4\)
\(\Leftrightarrow x^2+3x+2-5x+10=x^2-16\)
=>-2x+12=-16
=>-2x=-28
hay x=14(nhận)
Gọi chiều rộng của mảnh đất hình chữ nhật là \(x\left(m,x>0\right)\)
Chiều dài của mảnh đất hình chữ nhật: \(\dfrac{720}{x}\left(m\right)\)
Chiều rộng mới của mảnh đất hình chữu nhật \(x+6\left(m\right)\)
Chiều dài mới của mảnh đất hình chữ nhật \(\dfrac{720}{x}-4\left(m\right)\)
Theo đề bài, ta có PT: \(\left(x+6\right)\left(\dfrac{720}{x}-4\right)=720\)
\(\Leftrightarrow720-4x+\dfrac{4320}{x}-24=720\)
\(\Leftrightarrow720x-4x^2+4320-24x-720x=0\)
\(\Leftrightarrow-4x^2-24x+4320=0\)
\(\Leftrightarrow\left(x-30\right)\left(x+36\right)=0\)
Vậy \(x=30\) (thoả mãn)
Chiều rộng của mảnh vườn hình chữ nhật 24m, chiều dài của mảnh vườn hình chữ nhật 30m
Chu vi của mảnh đất hình chữ nhật: \(\left(24+30\right).2=108m\)
bằng -2 nhé