K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

(x – 1)(x2 + 3x – 2) – (x3 – 1) = 0

⇔ (x – 1)(x2 + 3x - 2) - (x - 1)(x2 + x + 1) = 0

⇔ (x – 1)[(x2 + 3x - 2) - (x2 + x + 1)] = 0

⇔ (x – 1). (x2 + 3x - 2 - x2 - x - 1) = 0

⇔ (x – 1)(2x - 3) = 0

⇔ x - 1 = 0 hoặc 2x - 3 = 0

+) Nếu x - 1 = 0 ⇔x = 1

+) Nếu 2x - 3 = 0 ⇔x = 3/2

Vậy tập nghiệm của phương trình là S = {1;3/2}

30 tháng 1 2019

(x – 1)( x 2  + 5x – 2) – ( x 3  – 1) = 0

⇔ (x – 1)( x 2  + 5x – 2) – (x – 1)( x 2  + x + 1) = 0

⇔ (x – 1)[( x 2  + 5x – 2) – ( x 2 + x + 1)] = 0

⇔ (x – 1)( x 2  + 5x – 2 –  x 2  – x – 1) = 0

⇔ (x – 1)(4x – 3) = 0 ⇔ x – 1 = 0 hoặc 4x – 3 = 0

      x – 1 = 0 ⇔ x = 1

      4x – 3 = 0 ⇔ x = 0,75

Vậy phương trình có nghiệm x = 1 hoặc x = 0,75

19 tháng 1 2019

Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có: 

⇔ x = 1(KTM)

Vậy phương trình đã cho vô nghiệm.

5 tháng 3 2017
15 tháng 12 2021

Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x

Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x

⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0

⇔[x=tx=1−t⇔[x=tx=1−t

⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m

⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1

Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:

−x2+x+1=−x2+3x−x2+x+1=−x2+3x

⇔x=12⇒y=54⇔x=12⇒y=54

Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1

6 tháng 12 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

10 tháng 1 2017

(x3 + x2) + (x2 + x) = 0

⇔x2 (x + 1) + x(x + 1) = 0

⇔(x2 + x)(x + 1) = 0

⇔x(x + 1)(x + 1) = 0

⇔x = 0 hoặc x + 1 = 0

⇔x = 0 hoặc x = -1

Vậy tập nghiệm của phương trình là : S = {0; -1}