cho tam giác abc cân tại a có góc a 80 độ, phân giác của B cắt tia hợp với BC 1 góc 15 tại I.Tính AIB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHO TỨ GIÁC ABCD CÓ C=80 ĐỘ,D=70 ĐỘ.CÁC TIA PHÂN GIÁC CỦA CÁC GÓC A và B CẮT NHAU TẠI I.TÍNH GÓC AIB
Giải:
Ta có: Góc A + Góc B + Góc C +Góc D = 3600 (tổng 4 góc trong tứ giác)
mà Góc C = 800 và Góc D = 700 nên Góc A + Góc B = 2100
Theo đề ra, thì AI và BI lần lượt là tia phân giác của Góc A và Góc B nên Góc IAB + Góc IBA = 2100/2 = 1050
Xét TG IAB, có: Góc AIB = 1800 - 1050=750
Vậy Góc AIB =750
GIẢI
TA CÓ: A+B+C+D=360 DỘ
suy ra A+b=80=70=360
SUY RA; A+B=360-70-80=210
SUY RA:DAI +IAB+IBC+IBA=210
SUY RA: A+B=210:2=105SUY RA DAI=IAB=105:2=52,5
SUY RA:DAI+IBC+I =180
52,5+52,5+I=180
I=180-(52,5+52,5)
I =180 -105
I = 75
Vì tam giác ABC là tam giác cân tại A nên B=C
Mà A=70 nên B+C=110
Suy ra B=C=110/2=55
Lại có B1=B2=55/2=27,5
góc C t/ư
Xét tam giác BICcos:
B2+BIC +C2=180(ĐL tổng 3 góc trong tam giác)
27,5+BIC+27,5=180
BIC=180-27,5-27,5
BIC=55
Vậy ...
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
a: AC=căn 10^2-6^2=8
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
góc C chung
=>ΔCHD đồng dạng với ΔCAB
=>CH/CA=CD/CB
=>CH*CB=CD*CA
c: BK=BA^2/BC=3,6cm
AK=6*8/10=4,8cm
Xét ΔBAK có BI là phân giác
nên IK/BK=AI/AB
=>IK/3=AI/5=(AI+IK)/(3+5)=4,8/8=0,6
=>IK=1,8cm
Ta có : tam giác AMH = tam giác AMK
=> AH = AK
Xét tam giác AHI và tam giác AKI có :
AH = AK
góc HAI = góc IAK ( vì AI là phương giác )
AI chung
=> tam giác AHI = tam giác AKI
=> góc AHI = góc AKI = 180 độ / 2 = 90 độ
và HI = IK = HK/ 2 = 6/2 = 3
Xét tam giác vuông AIK vuông tại I có :
AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)
=> AI = 4 cm
Ta có hình vẽ:
(Ảnh ko chuẩn lắm)
Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)
=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)
Xét \(\Delta MBH\)và \(\Delta MCK:\)
BM=CM(cmt)
\(\widehat{HBM}=\widehat{KCM}\)( \(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
=> HB=KC( 2 cạnh tương ứng)
Mà AB=AC => AH=AK
Xét \(\Delta AHI\)và \(\Delta AKI:\)
AH=AK (cmt)
AI: cạnh chung
\(\widehat{HAI}=\widehat{KAI}\)(gt)
\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)
=> HI=IK(2 cạnh tương ứng)
\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)
Lại có: AH=AK => \(\Delta AHK\)cân tại A
=> AI là đường cao của \(\Delta AHK\)
Xét \(\Delta AIK\)vuông tại I có:
Áp dụng định lý Py- ta-go, ta có:
AI2+IK2=AK2
=> AI2=AK2-IK2
=> AI2=52-32
=> AI2=16
=> AI=4cm
Vậy AI=4cm