K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2022

các bạn giúp mik nha mai mik phải nộp rùi

22 tháng 12 2022

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét tứ giác AKBC có 

N là trung điểm của AB

N là trung điểm của CK

Do đó: AKBC là hình bình hành

Suy ra: AK=BC

hay AK=2MC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

=>AM⊥BC

mà BC//AK

nên AM⊥AK

hay \widehat{MAK}=90^0

21 tháng 11 2023

Bài 2

loading...

a) Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠EBD

Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (cmt)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED (hai góc tương ứng)

⇒ ∠BED = 90⁰

⇒ DE ⊥ BE

⇒ DE ⊥ BC

c) Do DE ⊥ BC (cmt)

⇒ ∠DEC = 90⁰

⇒ ∆DEC vuông tại E

Do ∆ABD = ∆EBD (cmt)

⇒ AD = DE (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ADK và ∆DEC có:

AD = DE (cmt)

∠ADK = ∠EDC (đối đỉnh)

⇒ ∆ADK = ∆DEC (cạnh góc vuông - góc nhọn kề)

⇒ AK = EC (hai cạnh tương ứng)

Ta có:

AB = BE (gt)

AK = EC (cmt)

⇒ AB + AK = BE + EC

⇒ BK = BC

21 tháng 11 2023

Bài 1

loading... a) Xét ∆ABM và ∆ACM có:

AM là cạnh chung

AB = AC (gt)

MB = MC (gt)

⇒ ∆ABM = ∆ACM (c-c-c)

b) Do M là trung điểm của BC

⇒ BC = 2MC

Xét ∆ANK và ∆BNC có:

AN = BN (gt)

NK = NC (gt)

∠ANK = ∠BNC (đối đỉnh)

⇒ ∆ANK = ∆BNC (c-g-c)

⇒ AK = BC (hai cạnh tương ứng)

Mà BC = 2MC (cmt)

⇒ AK = 2MC

c) Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

⇒ ∆AMB vuông tại M

⇒ ∠ABM + ∠BAM = 90⁰ (1)

Do ∆ANK = ∆BNC (cmt)

⇒ ∠KAN = ∠NBC (hai góc tương ứng)

⇒ ∠KAN = ∠ABM (2)

Từ (1) và (2) ⇒ ∠MAK = ∠KAN + ∠BAM = 90⁰

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...  

Bài 4: 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét tứ giác AKBC có 

N là trung điểm của AB

N là trung điểm của CK

Do đó: AKBC là hình bình hành

Suy ra: AK=BC

hay AK=2MC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

=>AM⊥BC

mà BC//AK

nên AM⊥AK

hay \(\widehat{MAK}=90^0\)

18 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)

MD=MB

Do đó: ΔMAD=ΔMCB

=>\(\widehat{MAD}=\widehat{MCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: Xét ΔNAK và ΔNBC có

NA=NB

\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)

NK=NC

Do đó; ΔNAK=ΔNBC

=>\(\widehat{NAK}=\widehat{NBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//BC

Ta có: AD//BC

AK//BC

AK,AD có điểm chung là A

Do đó: D,A,K thẳng hàng

20 tháng 11 2021

A C B M N K

a) Xét 2 tam giác ABM và ACM:

+ MB=MC

+ AB=AC

+ Cạnh AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Xét 2 tam giác ANK và BNC

+ NK=NC

+ NA=NB

+ Góc ANK = góc BNC ( hai góc đối đỉnh )

\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)

\(\Rightarrow AK=BC\)( hai cạnh tương ứng )

Mà M là trung điểm của BC nên BC=2MC

\(\Rightarrow AK=2.MC\)

c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )

Mà hai góc AKN và BCN là cặp góc so le trong

\(\Rightarrow AK//BC\)

Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )

Mà góc AMB + AMC = 180 độ ( kề bù )\

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

 Mà AK//BC

\(\Rightarrow AM\perp AK\)

a: Xét tứ giác ACBF có 

N là trung điểm của CF

N là trung điểm của AB

Do đó: ACBF là hình bình hành

Suy ra: AF=BC

b: Xét tứ giác AECB có

M là trung điểm của AC

M là trung điểm của BE

Do đó: ABCE là hình bình hành

Suy ra:AE//BC và AE=BC

mà AF/BC

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

c: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình

=>MN//BC

hay MN//FE

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét tứ giác AKBC có 

N là trung điểm của AB

N là trung điểm của KC

Do đó: AKBC là hình bình hành

Suy ra: AK=BC

hay AK=2xMC

1 tháng 12 2021

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng