K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2014.2016}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{2014}-\frac{1}{2016}\)

\(=\frac{1}{2}-\frac{1}{2016}\)

\(=\frac{1008}{2016}-\frac{1}{2016}=\frac{1007}{2016}\)

1 tháng 3 2017

\(\frac{2}{2\times4}+\frac{2}{4\times6}+...+\frac{2}{2014\times2016}\)

=\(\left(\frac{2}{2}-\frac{2}{4}\right)+\left(\frac{2}{4}-\frac{2}{6}\right)+...+\left(\frac{2}{2014}-\frac{2}{2016}\right)\)

=\(\frac{2}{2}-\frac{2}{4}+\frac{2}{4}-\frac{2}{6}+...+\frac{2}{2014}-\frac{2}{2016}\)

=\(\frac{2}{2}-\frac{2}{2016}=\frac{1007}{1008}\)

3 tháng 1 2016

tk mk , mk tk 

13 tháng 3 2022

\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)x-2-5(x+1)=15

\(\Leftrightarrow\) x-2-5x-5=15

\(\Leftrightarrow\)x-5x=15+2+5

\(\Leftrightarrow\)-4x=22

\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)

vậy

13 tháng 3 2022

nhớ like nhahaha

8 tháng 7 2017

Giúp mình nhé các bạn mình đang cần gấp lắm

16 tháng 9 2021

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2013}+\dfrac{x-3}{2014}=\dfrac{x-4}{2015}+\dfrac{x-5}{2016}+\dfrac{x-6}{2017}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2012}+1\right)+\left(\dfrac{x-2}{2013}+1\right)+\left(\dfrac{x-3}{2014}+1\right)=\left(\dfrac{x-4}{2015}+1\right)+\left(\dfrac{x-5}{2016}+1\right)+\left(\dfrac{x-6}{2017}+1\right)\)

\(\Leftrightarrow\dfrac{x+2011}{2012}+\dfrac{x+2011}{2013}+\dfrac{x+2011}{2014}-\dfrac{x+2011}{2015}-\dfrac{x+2011}{2016}-\dfrac{x+2011}{2017}=0\)

\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow x=-2011\)( do \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\))