1/2.4+1/4.6+.....+1/2n(2n+2)=502/2009 tim n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2n\left(2n+2\right)}=\dfrac{1009}{4038}\)
\(\Leftrightarrow\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2n\left(2n+2\right)}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2n}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{n}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow2019n=1009\left(2n+2\right)\)
\(\Leftrightarrow2019n=2018n+2018\)
\(\Leftrightarrow n=2018\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)
Gọi biểu thức trên là A ta có
2A=2/2.4+2/4.6+.....+2/2n(2n+2)
(=) 1/2 - 1/4 + 1/4 - 1/6 + ..... + 1/2n - 1/2n+2 = 1004/2009
(=) 1/2 - 1/2n+2 = 1004/2009
(=) 1/2n+2 = 1/2-1004/2009
(=) 1/2n+2 = 1/4018
=)) 2n+2 = 4018
=)) 2n = 4016
=)) n = 2008