Số cặp số \(\left(x_0;y_0\right)\)nguyên thỏa mãn phương trình :
\(2x^6+y^2-2x^3y=320\)
Các bạn hướng dẫn cách giải giúp mình với. Mình cám ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mỗi điểm M xác định một cặp số \(\left(x_0;y_0\right)\). Ngược lại, mỗi cặp số \(\left(x_0;y_0\right)\) xác định một điểm M.
b) Cặp số \(\left(x_0;y_0\right)\) gọi là tọa độ của điểm M, \(x_0\) là hoang độ và \(y_0\)là tung độ của điểm M.
c) Điểm M có tọa độ \(\left(x_0;y_0\right)\) được kí hiệu là M\(\left(x_0;y_0\right)\).
a,mỗi điểm M xác định điểm(x0;y0).Ngược lại ,mỗi cặp(x0;y0)xác định điểm M
b,Cặp số(x0;y0) là tọa độ của điểm M;x0 là hoành độ và y0 là tung độ của điểm M
c,Điểm M có tọa độ (x0;y0) được kí hiệu là M(x0;y0)
Theo em ý kiến của bạn Nam là đúng.
Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)
Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)
Vì vậy hàm số không liên tục tại x0.
Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)
Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).
a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)
b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)
đặt x^3=t ( t thuộc Z) ta có:
2t^2-2ty+y^2=64 =>4t^2-4ty+2y^2=128<=> (2t-y)^2+y^2=128 (*)
Các số chính phương chỉ có thể tận cùng là 0;1;4;5;6;9 .Theo (*) tổng 2 số chính phương tận cùng bởi 8, nên 2 số đó có cùng tận cùng là 4. Mặt khác tổng 2 số chính phương này bằng 128 nên 2 số chính phương này bằng nhau và bằng 64, nên:
=>
* Với y=8 thì (2t-8)^2=64
=>
* Với y=-8 thì (2t+8)^2=64
=>
vậy có 4 cặp (x;y) =(2;8);(0;8);(0;-8);(-2;-8)
Đồng ý kết bạn đi
a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)
Lớp 7 sao lại để ở đây:
f(x0)=!1-3x0!
f(-x0)=!1+3x0!
f(x0)=f(-x0)=> !1-3x0!=!1+3x0! (1) khó viết cho x0=a đi
\(a< -\frac{1}{3}\Leftrightarrow1-3a=-1-3a\) => vô nghiệm a
\(-\frac{1}{3}\le a\le\frac{1}{3}\Rightarrow1-3a=1+3a\Rightarrow a=0\)
\(a\ge\frac{1}{3}\Rightarrow3a-1=1+3a\\ \)=> vô nghiêmh
Kết luận: \(x_0=0\)
217737