K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

\(a,\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\frac{11}{15}x=\frac{2}{5}\)

\(x=\frac{6}{11}\)

b,\(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

Vậy

17 tháng 1 2020

1) (x-1)(x+5)(-3x+8)=0

\(\hept{\begin{cases}\\\\\end{cases}}\)

17 tháng 1 2020

1) (x-1)(x+5)(-3+8)=0

=  (x-1)(x+5).5       =0

\(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0+1=1\\x=0-5=-5\end{cases}}\)

\(\Rightarrow x\in\left\{1;-5\right\}\)

2) (x-1)(x-2)(x-3)=0

\(\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0+1=1\\x=0+2=2\\x=0+3=3\end{cases}}\)

\(\Rightarrow x\in\left\{1;2;3\right\}\)

3)(5x+3)(x2+4)(x-1)=0

\(\hept{\begin{cases}5x+3=0\\x^2+4=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}5x=0-3=-3\\x^2=0-4=-4\\x=0+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-3:5\Rightarrow x\in\varnothing\\x\in\varnothing\\x=1\end{cases}}\)

\(\Rightarrow x=1\)

4)x(x2-1)=0

\(\orbr{\begin{cases}x=0\\x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x^2=1^2;(-1)^2\Rightarrow x\in\left\{1;-1\right\}\end{cases}}\)

\(\Rightarrow x\in\left\{-1;0;1\right\}\)

Xin lỗi về phần bên trên nha! tại tui ấn nhầm nút.Sorry.

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(2x^2-2x=x+3-x^2-3x\)

\(2x^2-2x=-2x+3-x^2\)

\(2x^2=3-x^2\)

\(2x^2+x^2=3\)

\(3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)

tớ n g u nên cần tg suy nghĩ thêm :v 

câu a tìm ra r nè , vất vả :v ( kiên trì lắm đấy )

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2+1\right)\)

\(9x^3+9x^2-4x-4-3x^2-3x-2x^2-2=0\)

\(6x^3+7x^2-7x-6=0\)

\(\left(6x^2+13x+6\right)\left(x-1\right)=0\)

\(Th1:6x^2+9x+4x+6=0\)

\(\Leftrightarrow\left[3x\left(2x+3\right)+2\left(2x+3\right)\right]=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\3x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)

\(Th2:x-1=0\Leftrightarrow x=1\)