K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(B=2x\left(x-4\right)-10=2x^2-8x-10\)

\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

\(minB=-18\Leftrightarrow x=2\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

\(A\ge1\forall x\)

Dấu '=' xảy ra khi x=0

\(B\ge-5\forall x\)

Dấu '=' xảy ra khi x=0

16 tháng 1 2022

\(A=x^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{min}=1\Leftrightarrow x=0\)

\(B=3x^4-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{min}=-5\Leftrightarrow x=0\)

2 tháng 9 2021

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

21 tháng 10 2021

a: Ta có: \(B=x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=2

21 tháng 7 2021

Đúng thì like giúp mik nha. Thx bạnundefined

NV
21 tháng 7 2021

\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)

\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)

\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)

\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)