Cho tam giác ABC cân tại A, đường cao AD. O là trung điểm của AC, điểm E đối xứng với D qua O
a) Chứng minh tứ giác ADCE là hcn
b) Gọi I là trung điêm của AD, chứng minh AEDB là hbh
c) Cho AB= 10cm, BC= 12 cm . Tính S tam giác OAD
d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để AE= DK
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
góc ADC=90 độ
Do đó: ADCE là hình chữ nhật
b: Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
c:BD=CD=BC/2=6cm
AO=OD=10/2=5cm
AD=8cm
P=(5+5+8)/2=18/2=9cm
\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)
giup em phần d ạ