K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

19 tháng 12 2022

giup em phần d ạ

 

19 tháng 12 2022

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

19 tháng 12 2022

giúp em phần d ạ

Sửa đề: E đối xứng D qua điểm O

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\widehat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b: Ta có: ADCE là hình chữ nhật

=>AE//CD và AE=CD

Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

=>DB=DC

Ta có: AE//DC

D\(\in\)BC

Do đó: AE//DB

Ta có: AE=DC

DC=DB

Do đó: AE=DB

Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

=>AD cắt EB tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của EB

 

NV
21 tháng 1

Chào em, em tự đặt câu hỏi rồi tự trả lời nhé.

Còn tái phạm là sẽ xóa bài + trừ GP để cảnh cáo đó.

Em có thể hỏi bài thoải mái, nhưng nếu hỏi xong tự mình trả lời sẽ là gian lận buff GP.

a: Xét tứ giác AECD có

O là trung điểm của AC

O là trung điểm của ED

Do đó: AECD là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên AECD là hình chữ nhật

29 tháng 11 2020

A B C D K I O E

* Giả thiết kết luận bạn tự trình bày nhé

a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật

b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD 

=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE

c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD

\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)

d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang 

Để AKDE là hình thang cân thì KD = AE

Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)

\(\Rightarrow\Delta ABC\)là tam giác đều

4 tháng 12 2021

mình cần gấp á 

a: Xét tứ giác ADCE có 

I là trung điểm của AC

I là trung điểm của DE

Do đó: ADCE là hình bình hành

mà AD=CD

nên ADCE là hình thoi

19 tháng 12 2019

a, O là trung điểm của AC (gt)

E đối xứng với D qua O (gt) => O là trung điểm của DE (đn)

xét tứ giá AECD 

=> AECD là hình bình hành 

Tam giác ABC cân tại A có AD là phân giác => AD là đường cao => AD _|_ BC => góc ADC = 90 

=> AECD là hình chữ nhật (dh) 

b, tam giác ABC cân tại A (gt)

AD là phân giác (Câu a)

=> AD đồng thời là đường trung tuyến của tam giác ABC (đl)

=> D là trung điểm của BC (đn)

=> BD = BC  : 2 (đl)

BC = 6 cm 

=> DB = 3 cm

xét tam giác ABD vuông tại D => AB^2 = AD^2 + BD^2

AB = 5 CM

=> 5^2 = 3^2 + AD^2

=> 25 = 9 + AD^2

=> AD^2 = 16

=> AD = 4 do AD > 0

tự tính S

19 tháng 12 2019

c, ACDE là hình chữ nhật (Câu a)

để ADCE là hình vuông

<=> AD = DC 

<=> tam giác ADC cân tại D mà góc ADC = 90

<=> góc ACD = 45

<=> tam giác ABC vuông cân tại A 

vậy cần thê đk là vuông

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB&lt;AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc