Nếu p là SNT thì p^2 + p + 2 là SNT hay hợp sô
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1; 2006 chia 3 dư 2
=> n2 + 2006 chia hết cho 3
Mà 1 < 3 < n2 + 2006
=> n2 + 2006 là hợp số
n là SNT lớn hơn 3
=> n ko chia hết cho 3
=>n2 chia 3 dư 1
=>n2=3k+1
=>n2+2006=3k+1+2006=3k+2007 chia hết cho 3 (vì 3k và 2007đeều chia hết cho 3)
=>n2+2006 là hợp số
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
+, Nếu p khác 3 thì p ko chia hết cho 3
=> p^2 chia 3 dư 1
=> p^2+2 chia hết cho 3
Mà p^2+2 > 3 => p^2+2 là hợp số
=> ko t/m
=> p = 3
=> p^3+2 = 3^3+2 = 29 là số nguyên tố
=> ĐPCM
Tk mk nha
*) \(p=2\) thì \(p^2+2=6\) ( loại vì 6 không phải là số nguyên tố
*) \(p=3\) thì \(p^2+2=11\) ( chọn vì 11 là số nguyên tố )
\(\Rightarrow\)\(p^3+2=3^3+2=29\) ( là số nguyên tố )
*) \(p>3\)
Vì \(p\) là số nguyên tố \(\Rightarrow\)\(p\)không chia hết cho 3 ( 1 )
\(p\inℤ\)\(\Rightarrow\)\(p^2\) là số chính phương ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(p^2\) : 3 dư 1
\(\Rightarrow p^2+2⋮3\)( 3 )
Mặt khác \(p>3\)
\(\Rightarrow p^2>9\)
\(\Rightarrow p^2+2>11\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(p^2+2\)không là số nguyên tố ( trái với đề bài )
A=p(p+1)+2
Vì p(p+1) chia hết cho 2
nên A chia hết cho 2
=>A là hợp số