có bao nhiêu cách chọn ra 2 học sinh có cả nam và nữ từ một nhóm học sinh gồm 6 nam và 4 nữ
A. 21 B. 10 C. 45 D. 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp
- Đếm số cách chọn 3 trong 10 bạn nam và 2 trong 8 bạn nữ.
- Sử dụng quy tắc nhân đếm số cách chọn.
Cách giải:
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ
Vì số học sinh nam, số học sinh nữ được chia đều vào các tổ nên số tổ là ước chung của 24 và 18
24 = 23.3
18 = 2.32
ƯC( 24; 18) = { 1; 2; 3; 6}
vì số tổ lớn hơn 1 nên số cách chia là 3 cách;
cách 1 chia thành 2 tổ mỗi tổ có 12 học sinh nam, 9 học sinh nữ
cách 2 chia thành 3 tổ mỗi tổ có 8 học sinh nam và 6 học sinh nữ
cách 3 chia thành 6 tổ mỗi tổ có 4 học sinh nam, và 3 học sinh nữ
b, Cách chia để mỗi nhóm có số học sinh ít nhât là cách chia thành 6 tổ . khi đó học sinh nam là 4 bạn, học sinh nữ là 3 bạn
a, ƯCLN (24;18)=6
Vậy số nhóm có thể chia là Ư(6)
Ư(6)= {1;2;3;6}
=> Có 3 cách chia nhóm
b, Nếu số nhóm càng nhiều, số học sinh mỗi nhóm càng ít.
Vậy khi chia thành 6 nhóm thì mỗi nhóm có số học sinh ít nhất.
Khi đó mỗi nhóm có:
- Số hs nam: 24:6=4(học sinh)
- Số hs nữ: 18:6=3(học sinh)
Trường hợp 1: Chọn 3 nữ, 2 nam ⇒ có cách chọn
Trường hợp 2: Chọn 4 nữ, 1 nam có cách chọn
Do đó có cách chọn.
Chọn B.
Chọn A có 1 cách, chọn B có 1 cách
Chọn 2 bạn bất kì từ 6 bạn còn lại (4 nữ và 2 nam): \(C_6^2\) cách
Vậy có \(1.1.C_6^2=15\) cách
Chọn B.
Số phần tử của không gian mẫu:
Gọi A là biến cố “nhóm được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam”
⇒ số phần tử của biến cố A là:
.
D
d