Cho hình bình hành ABCD, I là trung điểm của AB, DI và BC cắt nhau tại E. Chứng minh: ADBE là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ADBE có
I là trung điểm của AB
I là trung điểm của DE
Do đó: ADBE là hình bình hành
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
a: \(AK=KB=\dfrac{AB}{2}\)
\(DE=EC=\dfrac{DC}{2}\)
mà AB=DC
nên AK=KB=DE=EC
Xét tứ giác AKCE có
AK//CE
AK=CE
Do đó: AKCE là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AKCE là hình bình hành
=>AC cắt KE tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của KE
=>K,O,E thẳng hàng
Xét ΔIAD và ΔIBE có
góc AID=góc BIE
IA=IB
góc IAD=góc IBE
=>ΔIAD=ΔIBE
=>AD=BE
Xét tứ giác ADBE có
AD//BE
AD=BE
=>ADBE là hình bình hành
1)
Ta có:
* AB // CD (ABCD là hình bình hành (gt))
\(\Rightarrow\) AE // FC (1)
* Ta có: E là trung điểm AB (gt)
\(\Rightarrow\) EA = EB
F là trung điểm DC (gt)
\(\Rightarrow\) FD = FC
mà AB = DC
\(\Rightarrow\) AE = FC (2)
Từ (1)(2) \(\Rightarrow\) AECF là bình bình hành (dhnb3)