cmr 123456^16 chi hết 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
123456 + 456789 + 16 = 580261
Bạn k mình nha!
Nếu k mình thì xin cảm ơn!
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Vì 17 x a chia hết cho 11
Suy ra a chia hết 11
Vì 16 x b chia hết cho 11
Suy ra b chia hết cho 11
Vậy 16 x a cũng chia hết cho 11
17 x b cũng sẽ chia hết cho 11
Vậy 16 x a + 17 x b chia hết cho 11
\(A=1+16^1+16^2+16^3+...+16^{69}\) ( có 70 số hạng )
\(=\left(1+16\right)+\left(16^2+16^3\right)+...+\left(16^{68}+16^{69}\right)\) ( có 35 cặp số )
\(=\left(1+16\right)+16^2\left(1+16\right)+...+16^{68}\left(1+16\right)\)
\(=17+16^2.17+...+16^{68}.17\)
\(=17\left(1+16^2+16^4+...+16^{68}\right)⋮17\)
A không phải là số nguyên tố vì A > 17 và A chia hết 17.
số điền vào chỗ ^ là 0, 4, 8