Cho \(M=3\sin x-4\cos x\). Chọn khẳng định đúng :
A. \(M\le5\)
B. \(M>5\)
C. \(M\ge5\)
D. \(-5\le M\le5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)
\(B=\left\{-1;0;1;2;3;4;5\right\}\)
\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)
\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\)
\(x=1\Rightarrow y=1-2+m=m-1\)
\(\Rightarrow C=(m-1;m+3]\subset A\)
\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)
\(B\le\frac{x^2+25-x^2}{2}=\frac{25}{2}\)
\(\Rightarrow B_{max}=\frac{25}{2}\) khi \(\left|x\right|=\sqrt{25-x^2}\Leftrightarrow x=\pm\frac{5\sqrt{2}}{2}\)
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)
\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)
\(\Leftrightarrow f\left(x\right)\le10\)
Dấu "=" xảy ra :
\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)
Vậy...
\(-2x^2-4x+3-m=0\)
\(\Delta'=\left(-2\right)^2-\left(3-m\right).\left(-2\right)=10-2m\)
Để phương trình có nghiệm
\(\Leftrightarrow\Delta'\ge0\Leftrightarrow10-2m\ge0\Leftrightarrow m\le5\)
\(\Rightarrow A\)
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
A. \(\sin A = \sin \,(B + C)\)
Ta có: \((\widehat A + \widehat C) + \widehat B= {180^o}\)
\(\Rightarrow \sin \,(B + C) = \sin A\)
=> A đúng.
B. \(\cos A = \cos \,(B + C)\)
Sai vì \(\cos \,(B + C) = - \cos A\)
C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.
Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)
Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)
D. \(\sin A\,\, \le 0\)
Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)
\( \Rightarrow \sin A > 0\)
=> D sai.
Chọn A
ta có \(3\le a\le5\)
=> (a-3)(a-5) ≤ 0
<=> a2-5a-3a+15 ≤ 0
<=> a2-8a+15 ≤ 0 (1)
\(3\le b\le5\)
=> (b-3)(b-5) ≤ 0
<=> b2 -8b +15 ≤ 0 (2)
\(3\le c\le5\)
=> (c-3)(c-5) ≤ 0
<=> c2 -8c +15 ≤ 0 (3)
(1)+(2)+ (3)
=> a2+b2+c2 -8a-8b-8c +45 ≤ 0
<=> 50-8(a+b+c)+45 ≤ 0
<=> -8(a+b+c) ≤ -95
<=> a+b+c ≥ \(\dfrac{95}{8}\)
=> Min A= 95/8
- Áp dụng BĐT bunhiacopxki ta có :
\(\left(3sinx+4cosx\right)^2\le\left(3^2+4^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Leftrightarrow-5\le M\le5\)
P/s : Chắc là đề nhầm :vvv nếu không nhầm thì thêm bớt rồi bunhi xong cộng với cos thêm vào nha
Cảm ơn bạn nhìu nhaaa!