tìm số nguyên x biết
\(\frac{x+10}{27}=\frac{x}{9}\)
\(\frac{-7}{x}=\frac{-21}{x-34}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x}{5}=\frac{x+6}{15}\Rightarrow15x=5\left(x+6\right)\)
\(\Rightarrow15x=5x+30\)
\(\Rightarrow10x=30\)
=> x = 3
Vậy x = 3
b) \(\frac{x+10}{27}=\frac{x}{9}\Rightarrow9\left(x+10\right)=27x\)
\(\Rightarrow9x+90=27x\)
\(\Rightarrow18x=90\)
=> x = 5
Vậy x = 5
c) \(\frac{x+16}{35}=\frac{x}{7}\Rightarrow7\left(x+16\right)=35x\)
\(\Rightarrow7x+112=35x\)
\(\Rightarrow28x=112\)
=>x = 4
Vậy x = 4
NĂM MỚI AN LÀNH
ai làm nhanh mk sẽ cho và tặng quà nha nhớ để lại địa chỉ qua tết mk sẽ gửi
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)
\(ĐKXĐ\): \(x\ne-3\); \(x\ne-10\); \(x\ne-21\); \(x\ne-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)( thỏa mãn )
Vậy \(x=31\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)+\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow x=31\)
a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
Bài 1 : Ta có:
\(\frac{7+\frac{7}{11}+\frac{7}{23}+\frac{7}{31}}{9+\frac{9}{11}+\frac{9}{23}+\frac{9}{31}}\)
= \(\frac{7.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}{9.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}\)
= \(\frac{7}{9}\)
Bài 2 :
\(\frac{x}{2}+\frac{3x}{4}+\frac{5x}{6}=\frac{10}{24}\)
=> \(\frac{12x+18x+20x}{24}=\frac{10}{24}\)
=> 50x = 10
=> x = 10 : 50
=> x = 1/5
Bài 3 : Để A nhận giá trị nguyên thì 3 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
x + 3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Vậy
Ta có : \(\frac{x+10}{27}=\frac{x}{9}\Leftrightarrow9x+90=27x\)
\(\Rightarrow90=27x-9x\)
\(\Rightarrow90=18x\)
\(\Rightarrow x=90:18=5\)
Vậy x = 5