a) giá trị biểu thức 19x với x=-7 là
b) cho -5-x=-11 thì x bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x=18\Rightarrow\hept{\begin{cases}x+1=19\\-x-1=-19\end{cases}}\)
Thay vào BT D ta được:
\(D=x^{12}+\left(-x-1\right)x^{11}+\left(x+1\right)x^{10}+\left(-x-1\right)x^9+...+\left(x+1\right)x^2+\left(-x-1\right)x+1\)
\(=x^{12}-x^{12}-x^{11}+x^{11}+x^{10}-x^{10}-x^9+...+x^3+x^2-x^2-x+1\)
\(=1-x\)
a, A xác định
\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)
\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)
b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)
\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)
\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)
c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)
\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)
Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)
Bài của Hùng rất thông minh
Đang định có cách khác mà dài hơn cách Hùng nên thui
^^ 2k5 kết bạn nhé
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{x^2+4x+4+x^2-4x+4+16}{2\left(x-2\right)\left(x+2\right)}\\ A=\dfrac{2x^2+32}{2\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+16}{x^2-4}\\ c,A=-3\Leftrightarrow-3x^2+12=x^2+16\\ \Leftrightarrow4x^2=-4\Leftrightarrow x\in\varnothing\)
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
a)\(=-133\)
b)\(x=6\)