K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

a: Sửa đề; DA=EF

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nen AEDF là hình chữ nhật

=>DA=EF

b: Xét tứ giác AFEH có

AF//HE

AF=HE

Do đó: AFEH là hình bình hành

XétΔABC có

Dlà trung điểm của BC

DE//AC

Do đó E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó:F là trung điểm của AC

Xét tứ giác AHBD có

E là trung điểm chung của AB và HD

AB vuông góc với HD

Do đó: AHBD là hình thoi

=>AB là phân giác của góc HAD(1)

c: Xét tứ giác ADCI có

F là trung điểm chung của AC và DI

DA=DC

Do đó: ADCI là hình thoi

=>AC là phân giác của góc DAI(2)

Từ (1), (2) suy ra góc IAH=2*90=180 độ

=>I,A,H thẳng hàng

mà AI=AH

nên A là trung điểm của IH

20 tháng 12 2022

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét ΔABC có CF/CA=CD/CB

nên DF//AB và DF=AB/2

=>Di//AB và DI=AB

=>ABDI là hình bình hành

NM
21 tháng 10 2021

ta có:

undefined

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

15 tháng 12 2023

loading...  loading...  loading...  loading...  

14 tháng 12 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

FG=FD

G,F,D thẳng hàng

Do đó: F là trung điểm của GD

Xét tứ giác ADCG có

F là trung điểm chung của AC và GD

=>ADCG là hình bình hành

Hình bình hành ADCG có AC\(\perp\)GD

nên ADCG là hình thoi

 

22 tháng 11 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b:

MD\(\perp\)AB

AC\(\perp\)AB

Do đó: MD//AC

ME\(\perp\)AC

AB\(\perp\)AC

Do đó: ME//AB

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔBAC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔBAC

=>MD//AC và \(MD=\dfrac{AC}{2}\)

\(MD=\dfrac{AC}{2}\)

\(CE=\dfrac{AC}{2}\)

Do đó: MD=CE

MD//AC

\(E\in\)AC

Do đó: MD//CE

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\)

mà \(MD=\dfrac{AC}{2}\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

=>DHME là hình thang

Hình thang DHME có MD=HE

nên DHME là hình thang cân

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật