K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC=AH^2\)

b: Xét ΔAMN và ΔABC có 

AM/AB=AN/AC
góc MAN chung

Do đó ΔAMN\(\sim\)ΔABC

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

5 tháng 5 2022

_____ + H2O --> H2SO4

CuCl2 + NaOH --> NaCl + ____

N2O5 + H2O --> _____

H2 + ___ --> Cu + ___

Fe + ____ --> FeSO4 + H2

BaCl2 + AgNO3 --> _____ + _____

____ + ____ --> Al2O3

CuO + ___ --> Cu + CO2

KMnO4 --> ____ + ____ + _____

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ:

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

c:

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

 \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)

=>DE=7,2cm