Tìm số nguyên x ,sao cho
A=x2+2021 đạt giá trị nhỏ nhất
cứu tui với!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
\(A=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
A đạt giá trị nhỏ nhất khi \(\dfrac{10}{x-1}\) đạt giá trị nhỏ nhất
\(\Rightarrow x-1\) là số âm lớn nhất
Mà x nguyên \(\Rightarrow x-1\) là số nguyên âm lớn nhất
\(\Rightarrow x-1=-1\)
\(\Rightarrow x=0\)
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn
`A = (10x + 25)/(2x+4)`
`= (10x + 20)/(2x+4) + 5/(2x+4)`
`= 5 + 5/(2x+4)`
`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất
`<=> 2x+4` là số nguyên âm nhỏ nhất
`<=> 2x + 4 = -2`
`<=> 2x = -6`
`<=> x = -3`
Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`
Ta có: \(A=\dfrac{3x-2}{x+2}=\dfrac{3\left(x+2\right)-4}{x+2}=\dfrac{3\left(x+2\right)}{x+2}-\dfrac{4}{x+2}=3-\dfrac{4}{x+2}\)
Để A mang giá trị nguyên khi
\(4⋮x+2\) hay \(x+2\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(x+2=-1\Rightarrow x=\left(-1\right)-2\Rightarrow x=-3\)
\(x+2=1\Rightarrow x=1-2\Rightarrow x=-1\)
\(x+2=-2\Rightarrow x=\left(-2\right)-2\Rightarrow x=-4\)
\(x+2=2\Rightarrow x=2-2\Rightarrow x=0\)
\(x+2=-4\Rightarrow x=\left(-4\right)-2\Rightarrow x=-6\)
\(x+2=4\Rightarrow x=4-2\Rightarrow x=2\)
Vậy để A là số nguyên khi \(x\in\left\{-3;-1;-4;0;-6;2\right\}\)
Vì \(x^2 \ge 0\) với mọi `x`
\(=>x^{2}+2021 \ge 2021\) với mọi `x`
Hay \(A \ge 2021\) với mọi `x`
Dấu "`=`" xảy ra `<=>x=0`
chắc là x=0