Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD.
a)Chứng minh ED//FH và DM vuông góc EF
b)Trên mặt phẳng bờ là DF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
a: Xét ΔDEM và ΔDFM có
DE=DF
EM=FM
DM chung
Do đó: ΔDEM=ΔDFM
b: Ta có: ΔDEF cân tại D
mà DM là đường trung tuyến
nên DM là đường cao
c: Xét tứ giác DENF có
M là trung điểm của DN
M là trung điểm của FE
Do đó: DENF là hình bình hành
Suy ra: DE//FN
a: \(\widehat{DFE}=30^0\)
b: Xét tứ giác DEFM có
DE//FM
DE=FM
Do đó: DEFM là hình bình hành
Suy ra: MD//EF
c: Xét tứ giác DHFK có
DH//FK
DK//HF
Do đó: DHFK là hình bình hành
Suy ra: HF=DK
Ta có: DK+KM=DM
FH+HE=FE
mà DM=FE
và DK=FH
nên KM=HE
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
a: Sửa đề: Cm ED//FN và FN vuông góc với FD
Xét tứ giác DENF có
M là trung điểm chung của DN và EF
góc EDF=90 độ
Do đó: DENF là hình chữ nhật
=>ED//FN và FN vuông góc với FD