Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng: a+c+m/a+b+c+d+m+n<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
1) tính :
a) 5.17=85
b) (-15).(-6)=90
2) cho a là một số nguyên dương . hỏi b là số nguyên dương hay số nguyên âm nếu :
a) tích a.b là một số nguyên dương =>b là số nguyên dương
b) tích a.b là một số nguyên âm => b là số nguyên âm
\(6,\)
\(a,x+2017=-1\)
\(\Rightarrow x=-2018\)
Vậy: \(x=-2018\)
\(b,y-\left(-100\right)=1\)
\(\Rightarrow y+100=1\)
\(\Rightarrow y=-99\)
Vậy: \(y=-99\)
Ta có: 100a là số chính phương
mà: \(100a=10^2a\)
=> a là số chính phương
Đặt \(a=k^2\)với k thuộc N
a chia hết cho 6 => k^2 chia hết cho 6=> k^2 chia hết cho 2 và chia hết cho 3
Vì 2, 3 là 2 số nguyên tố => k chia hết cho 2 và 3 => k chia hết cho 6
Mặt khác a là số nguyên dương nhỏ nhất thỏa mãn các điều kiện trên đề bài
=> k =6 ( k khác 0 vì a là số nguyên dương)
=> a=k^2=36