chứng minh rằng:
E=1+3+3^2+3^3+...+3^119 chia hết cho 13
giúp tui nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)
Ta có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4)+(2^6+2^8+2^{10})+(2^{12}+2^{14}+2^{16})+(2^{18}+2^{20}+2^{22})$
$=21+2^6\cdot(1+2^2+2^4)+2^{12}\cdot(1+2^2+2^4)+2^{18}\cdot(1+2^2+2^4)$
$=21+2^6\cdot21+2^{12}\cdot21+2^{18}\cdot21$
$=21\cdot(1+2^6+2^{12}+2^{18})$
Vì $21\vdots7$
nên $21\cdot(1+2^6+2^{12}+2^{18})\vdots7$
hay $A\vdots7$ (1)
Lại có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4+2^6)+(2^8+2^{10}+2^{12}+2^{14})+(2^{16}+2^{18}+2^{20}+2^{22})$
$=85+2^8\cdot(1+2^2+2^4+2^6)+2^{16}\cdot(1+2^2+2^4+2^6)$
$=85+2^8\cdot85+2^{16}\cdot85$
$=85\cdot(1+2^8+2^{16})$
Vì $85\vdots17$
nên $85\cdot(1+2^8+2^{16})\vdots17$
hay $A\vdots17$ (2)
Mặt khác: $(7,17)=1$ (3)
Từ (1); (2) và (3) $\Rightarrow A\vdots 7\cdot17=119$
$\text{#}Toru$
\(^{A=1+3+3^2+3^3+...+3^{119}}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(^{=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)}\)
\(^{=13+3^3.13+...+3^{117}.13}\)
\(13\left(1+3^3+...+3^{117}\right)\)chia hết cho 13
=>A chia hết cho 13
Nhóm 2 số 1 cặp
M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)
M= 1. 4 + 3^2.4+... + 3^118 . 4
M = 4.(1+3^2+...+ 3^118) chia hết cho 4
Vậy M chia hết cho 4
Nhóm 3 số 1 cặp
M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)
M= 1.13+ 3^3.13+... + 3^117 . 13
M = 13 . (1+3^3+...+3^117) chia hết cho 13
Vậy M chia hết cho 13
Nhớ k cho mình nếu bạn thấy đúng nhé!
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
Đối với 4 cũng tương tự
a, mình nghĩ là \(16^5+2^{15}\)
ta có : \(16^5=2^{20}\)
=>\(16^5+2^{15}=2^{20}+2^{15}\)
=\(2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
mà \(2^{15}.33⋮33\)
\(=>16^5+2^{15}⋮33\)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
E = 1 + 3 + 32 + 33 +.....+3119
E = ( 1 + 3 + 32) +....+ ( 3117 + 3118+ 3119)
E = 13 + ......+ 3117.( 1 + 3 + 32)
E = 13 +.....+ 3117 . 13
E = 13. ( 30 + ....+ 3117)
13 ⋮ 13 ⇒ 13. (30 +....+3117) ⋮ 13 ⇒ E = 1 +3+32+ ....+3119⋮13(đpcm)
=\(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
= \(13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
=\(13+3^3.13+...+3^{117}.13\)
=\(13.\left(1+3^2+...+3^{117}\right)\) chia hết cho 13