Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CA,CM là tiếp tuyến
nênCA=CM và OC là phân giác của góc AOM(1)
mà OA=OM
nên OC là trung trực của AM
=>OC vuông góc với AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Xét (O)có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>MB vuông góc MA
=>MB//OC
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>OC vuông góc với OD
mà OM vuông góc DC
nên MC*MD=OM^2
=>AC*BD=R^2
c: Gọi H là trung điểm của CD
Xét hình thang ABDC có
H,O lần lượtlà trung điểm của CD,AB
nên HO là đường trung bình
=>HO//AC//BD
=>HO vuông góc với AB
=>AB là tiếp tuyến của (H)
CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…
Bài 5:
a: Xét tứ giác BHCA có \(\widehat{BHA}=\widehat{BCA}=90^0\)
nên BHCA là tứ giác nội tiếp
=>B,H,C,A cùng thuộc một đường tròn
b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có
\(\widehat{HKA}\) chung
Do đó: ΔKHA đồng dạng với ΔKCB
=>\(\dfrac{KH}{KC}=\dfrac{KA}{KB}\)
=>\(KH\cdot KB=KA\cdot KC\)
c: Gọi giao điểm của KE với BA là M
Xét ΔKBA có
AH,BC là các đường cao
AH cắt BC tại E
Do đó: E là trực tâm của ΔKBA
=>KE\(\perp\)BA tại M
Xét ΔBME vuông tại M và ΔBCA vuông tại C có
\(\widehat{MBE}\) chung
Do đó: ΔBME đồng dạng với ΔBCA
=>\(\dfrac{BM}{BC}=\dfrac{BE}{BA}\)
=>\(BM\cdot BA=BC\cdot BE\)
Xét ΔAME vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAE}\) chung
Do đó: ΔAME đồng dạng với ΔAHB
=>\(\dfrac{AM}{HA}=\dfrac{AE}{AB}\)
=>\(AH\cdot AE=AM\cdot AB\)
\(BC\cdot BE+AH\cdot AE=BM\cdot BA+AM\cdot AB=AB^2\) không đổi
b: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+MD=CD
nên CD=AC+BD
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
OC là phân giác của \(\widehat{AOM}\)
nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là tiếp tuyến
DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
Ta có: OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)
b: Xét tứ giác BDMO có
\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)
=>BDMO là tứ giác nội tiếp đường tròn đường kính OD
=>B,D,M,O cùng nằm trên đường tròn đường kính OD
Bán kính là \(R'=\dfrac{OD}{2}\)
c: Ta có: CD=CM+MD
mà CM=CA
và DM=DB
nên CD=CA+DB
d,e: Gọi N là trung điểm của CD
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Ta có: ΔCOD vuông tại O
=>ΔCDO nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)
f: Xét ΔNCA và ΔNBD có
\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)
\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)
Do đó: ΔNCA đồng dạng với ΔNBD
=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)
Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)
nên MN//AC
a: Xét (O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là trung trực của AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: Xét tứ giác MEOF có
góc MEO=góc MFO=góc EOF=90 độ
nên MEOF là hình chữ nhật
=>EF=MO=R
a: Xét tứ giác OAPC có
góc OAP+góc OCP=180 độ
nên OAPC là tứ giác nội tiếp
b: Xét (O) có
PC,PA là tiếp tuyến
nên PA=PC
mà OC=OA
nên OP là trung trực của AC
=>OP vuông góc với AC
Xét (O) có
QC,QB là các tiếp tuyến
nên QC=QB
mà OB=OC
nên OQ là trung trực của BC
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đo: ΔACB vuông tại C
Xét tứ giác CMON có
góc CMO=góc CNO=góc MCN=90 độ
nen CMON là hình chữ nhật
c: PA*BQ=PC*CQ=OC^2=OB*OA