Cho tam giác ABC vuông tại A. M là trung điểm của BC. Qua M kẻ các đường thẳng song song với AB và AC, cắt AC, AB tại E và F
a/ chứng minh E là trung điểm của AC
b/ gọi O là trung điểm của AM. Chứng minh E, O, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
a) Ta có:
\(IN//AC\left(gt\right)\)
\(AC\perp AB\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AB\)\(hay\)\(\widehat{ANI}=90^o\)
\(Cmtt:IM//AB\left(gt\right)\)
\(AB\perp AC\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AC\)\(hay\)\(\widehat{AMI}=90^o\)
Xét tứ giác AMIN có:
\(\widehat{A}=\widehat{ANI}=\widehat{AMI}=90^o\)
Do đó tứ giác AMIN là hình chữ nhật
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của BA
EM//AC
Do đó: M là trung điểm của BC
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF//BC
=>EF//MH
ΔHAC vuông tại H
mà HF là đường trung tuyến
nên \(HF=AF\)
mà AF=ME(AEMF là hình chữ nhật)
nên ME=FH
Xét tứ giác MHEF có MH//EF
nên MHEFlà hình thang
mà ME=FH
nên MHEF là hình thang cân
a) Co E la trung diem cua AC, FE//BC suy ra F la trung diem AB(duong trung binh )
Co E la trung diem AC, ED//AB suy ra D la trung diem BC(duong trung binh)
b) Co F la trung diem AB (cmt), D la trung diem BC (cmt) suy ra FD la duong trung binh cua tam giac ABC
suy ra FD//=1/2 AC (t/c duong trung binh)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD