K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

ΔOBC cân tại O

mà OE là trung tuyến

nên OE vuông góc với BC và OE là phân giác của góc BOC

b: Xét ΔOBD và ΔOCD có

OB=OC

góc BOD=góc COD
OD chung

Do đó: ΔOBD=ΔOCD

=>góc OBD=90 độ

=>DB là tiếp tuyên của (O)

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOBD và ΔOCD có 

OB=OC

OD chung

DB=DC

Do đó: ΔOBD=ΔOCD

Suy ra: \(\widehat{OBD}=\widehat{OCD}\)

\(\Leftrightarrow\widehat{OBD}=90^0\)

hay DB là tiếp tuyến có B là tiếp điểm của (O)

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có 

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC tại E

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

DC=DB

OD chung

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

\(\Leftrightarrow\widehat{OCD}=90^0\)

hay DB là tiếp tuyến của (O)

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔABC có 

O là trung điểm của AB

E là trung điểm của BC

Do đó: OE là đường trung bình của ΔBAC

Suy ra: OE\(\perp\)CB

29 tháng 8 2021
a) Vẽ hình

a) Xét đường tròn (O) có AB  là đường kính và △ ABC nội tiếp đường tròn (O)

⇒ \(\widehat{ACB}=90^0\) hay △ ABC vuông tại C.

Có: OC = OB (do cùng bằng bán kính), suy ra O cách đều hai điểm C và B,

⇒  O nằm trên trung trực của BC.

Có EC = EB (do E là trung điểm của BC), suy ra E cách đều hai điểm B và C

⇒ E nằm trên trung trực của BC.

Ta có E và O  đều nằm trên đường trung trực của đoạn BC

⇒ OE là trung trực của đoạn BC.

 OE ⊥ BC (đpcm)

b)  Vì tiếp tuyến tại C của (O) cắt OE  ở D nên ta có D nằm trên EO, suy ra D nằm trên đường trung trực của BC ⇒ DB = DC (tính chất đường trung trực)

Xét ΔCOD và ΔBOD có:

OC = OB (do cùng là bán kính của đường tròn)

OD chung

DB = DC (cmt)

⇒ ΔCOD = ΔBOD ( c − c − c )

\(\widehat{OCD}=\widehat{OBD}=90^0\)

⇒  BD ⊥ OB

Suy ra DB  là tiếp tuyến của (O)  (đpcm).

c)Vì DB  là tiếp tuyến của (O) (cmt) 

  \(\widehat{OBD}=90^0\)       ⇒          \(\widehat{CBO}+\widehat{CBD}=90^0\)       \(\left(1\right)\)

Vì OD  là trung trực của BC (cmt) 

⇒ OD ⊥ BC ⇒ \(\widehat{DEB}=90^0\)\(\widehat{ODB}+\widehat{CBD}=90^0\)     \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\widehat{CBO}=\widehat{ODB}\) ( cùng phụ với \(\widehat{DBC}\) )

Xét △ ODB và △ CBH có:

\(\widehat{CHB}=\widehat{OBD}=90^0\)

\(\widehat{CBO}=\widehat{ODB}\) ( cmt )

△ ODB \(\approx\) △ CBH ( g − g )

\(\dfrac{OB}{CH}=\dfrac{OD}{BC}\)

⇒  OB .  BC = OD . CH

△ ODB ∼ △ CBH ( g − g )

Mà có OB = OC (do cùng là bán kính của đường tròn)

Suy ra: CB.OC=OD.HC (đpcm)

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét (O) có 

OE là một phần đường kính

CB là dây

E là trung điểm của CB

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

EC=EB

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

OD chung

CD=BD

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

mà \(\widehat{OCD}=90^0\)

nên \(\widehat{OBD}=90^0\)

hay DB\(\perp\)OB tại B

hay DB là tiếp tuyến của (O) 

b: ΔOBC cân tại O có OE là đường cao

nên OE là phân giác của góc COB

Xét ΔBOE và ΔCOE có

OB=OC

góc BOE=góc COE

OE chung

=>ΔBOE=ΔCOE

=>góc OCE=góc OBE=90 độ

=>EC là tiếp tuyến của (O)

c: OB=OC

EB=EC

=>OE là trung trực của BC

=>sđ cung DB=sđ cung DC

=>góc BAD=góc CAD

=>AD là phân giác của góc BAC

22 tháng 12 2020

Bạn tự vẽ hình giúp mình nha!

Ta có: OC=OB=R

Ta có: E là trung điểm BC

Suy ra: OE\(\perp\)CB

Tam giác OCB cân tại O, suy ra \(\widehat{OCB}=\widehat{OBC}\)

Ta có: \(\widehat{HCB}=\widehat{COD}\) (cùng phụ với góc \(\widehat{OCB}=\widehat{OBC}\))

Xét hai tam giác OCD và CHB, có:

\(\widehat{HCB}=\widehat{COD}\)

H và C là hai góc vuông

\(\Rightarrow\Delta OCD\sim\Delta CHB\)

\(\Rightarrow\dfrac{OC}{OD}=\dfrac{HC}{CB}\) \(\Leftrightarrow OC.OB=HC.OD\left(đccm\right)\)

22 tháng 12 2020

cảm ơn bạn nha

a: Xét (O) có 

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=8(cm)

b: Xét ΔBOM và ΔAOM có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔBOM=ΔAOM

Suy ra: \(\widehat{OBM}=\widehat{OAM}=90^0\)

hay MA là tiếp tuyến của (O)

3 tháng 4 2015

Ta có: Tam giác DAO cân tại O (vì OA = OD)     => Góc ADO = Góc DAO

Ta lại có: Góc HBD = Góc ADO (cùng phụ Góc HDB)                       => Góc HBD = Góc DAO

Tam giác DBA vuông tại D      => Góc DAB + Góc DBA = 90độ

Mà Góc DBA + Góc DBI = 90độ

=> Góc DAB = Góc DBI       hay       Góc DAO = Góc DBI

Từ 2 chứng minh trên ta được: Góc HBD = Góc DBI

=> BD (hay BK) là đường phân giác Góc HBI

Áp dụng tính chất đường phân giác vào tam giác BHI ta được:

KH / BH = KI / BI            hay            KH.BI = KI.BH  (đpcm)