a) Phân tích đa thức sau thành nhân tử: x^3(x^2-7)^2-36x
b) Cho biểu thức: A=n^3(n^2-7)^2-36n
Chứng minh Achia hết cho 5040 với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
a) Phân tích được x3(x2 - 7)2 – 36x = x(x + 1 )( x - 1 )(x - 3)(x + 2)(x - 2)( x + 3)
b) Theo phần a ta có :
A = n3(n2 - 7)2 - 36n = n(n + 1)(n - 1) (n - 3)(n + 2)(n - 2)(n + 3)
Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có:
- Một bội của 2 nên A chia hết cho 2.
- Một bội của 3 nên A chia hết cho 3.
- Một bội của 5 nên A chia hết cho 5.
- Một bội của 7 nên A chia hết cho 7.
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A chia hết cho (2; 3; 5;7)
Hay A chia hết cho 210.
1) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
2) \(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)
\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)
\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)
\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)
Rồi sao nữa còn nghĩ :))
Ta có: A=x^2 +6x-7 =>A= (x^2 -x)+(7x-7)=> A= x(x-1) +7(x-1)=>A=(x+7)(x-1)
Ta có: C= x^4 +x^3 +2x^2 -x+3
=> C= (x^4 +x) +(x^3 +1) +2.(x^2 -x+1)
=>C= x(x^3 +1) + (x^3 +1) +2.(x^2 -x+1)
=>C=x(x+1)(x^2-x+1) +(x+1)(x^2-x+1) +2.(x^2-x+1)
=>C=(x^2-x+1)(x^2 +x+x+1+2)
=>C=(x^2 -x+1)(x^2 +2x+3)
ta có: B= \(x^3\left(x^2-7\right)^2-36x\)
=>B=\(x\left[x^2.\left(x^2-7\right)^2-6^2\right]\)
=>B=\(x\left[x\left(x^2-7\right)-6\right].\left[x\left(x^2-7\right)+6\right]\)
=>B=\(x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)
=>B=\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)
2) Ta có: M=n^3 (n^2 -7)^2 -36n
=>M=(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Như vậy M là tích của 7 số liên tiếp
=> trong đó có 1 số chia hết cho 2 ; 1 số chia hết cho 3 ; 1 số chia hết cho5 ; 1 số chia hết cho7
Mà 2;3;5;7 nguyên tố cùng nhau nên M \(⋮\)(2.3.5.7) hay M\(⋮\) 210
Vậy với mọi n thuộc N thì M chia hết cho 210
\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)
\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)
\(\text{Phân tích thành nhân tử}\)
\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)
Câu 3 ko hiểu >o<
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
A = x.[x^2.(x^2-7)^2-36]
= x.[(x^3-7x)^2-6^2]
= x.(x^3-7x-6).(x^3-7x+6)
= x.[(x^3+1)-(7x+7)].[(x^3-x)-(6x-6)]
= x.(x+1).(x^2-x-7).(x-1).(x^2+x-6)
= x.(x+1).(x-1).(x-2).(x+3).(x^2-x-7)
Tk mk nha
x3(x2−7)2−36x=x3(x4−14x2+49)−36xx3(x2−7)2−36x=x3(x4−14x2+49)−36x
=x7−14x5+49x3−36xx7−14x5+49x3−36x
=x7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36xx7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36x
=x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)
=x(x−1)(x5+x4−13x3−13x2+36x+36)x(x−1)(x5+x4−13x3−13x2+36x+36)
=x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]
=x(x−1)(x+1)(x4−13x2+36)x(x−1)(x+1)(x4−13x2+36)
đặt x^2 =a (a>=0) thì xét đa thức x4−13x2+36=a2−13a+36x4−13x2+36=a2−13a+36
xét Δ=b2−4ac=169−4.36=25Δ=b2−4ac=169−4.36=25
Δ>0Δ>0→phương trình có 2 nghiệm riêng biệt là ⎡⎣a1=−b+Δ√2a=13+52=9a2=−b−Δ√2a=13−52=4[a1=−b+Δ2a=13+52=9a2=−b−Δ2a=13−52=4(t/m a>=0)
vậy bt ban đầu :x(x−1)(x+1)(x2−4)(x2−9)x(x−1)(x+1)(x2−4)(x2−9)
=(x−3)(x−2)(x−1)x(x+1)(x+2)(x+3)